
1/24

Lecture 8: Value Function Iteration

Jacob Adenbaum

University of Edinburgh

Spring 2024

2/24

Dynamic Programs are Everywhere

I Dynamic problems show up everywhere in Economics

I You find one anytime an agent is choosing how to trade off a reward today against waiting
for tomorrow. E.g.
I Saving for tomorrow vs. consuming today
I How much costly effort to put into a job search
I Should a bus mechanic repair the engine today, or wait until next month?

I The trouble is that they are extremely difficult to solve

I In general, pen-and-paper solutions don’t exist, and we have to solve them on a computer

3/24

Why do we want to solve them?
Roadmap for the future

I The main goal we have is to be able to simulate fake data from our models
I For that, we need to solve for the optimal policy rule that our agents have under any

situation that could arise
I Then we just randomly simulate the shocks, and step our simulated agents forward using

their policy rules

Don’t worry if this doens’t make much sense right now. I’ll be much more precise about this next
week

I Once we can simulate data from our model, we can study the model’s predictions under
various parameters

I Estimation: We can choose parameters that make our model’s simulated data match
the real data

I Policy Experiments: We can change government policy, and see how agents’ behavior
changes.

We can figure out what is the optimal policy

4/24

Section 1

Finite Horizon Dynamic Programs

5/24

The neoclassical growth model in 3 periods
I Suppose we take the standard neoclassical growth model with only three periods.

I Households choose between consuming and investing in the capital stock
I Capital depreciation at rate δ, and initial capital k1

I Flow utility u(c) and production function Ft(k) = Atkα

I We can write this problem with a period by period budget constraint:
v1(k1) := max

c1,c2,c3,k2,k3

u(c1) + βu(c2) + β2u(c3)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1 Period 1 BC

c2 + k3 ≤ A2kα
2 + (1− δ)k2 Period 2 BC

c3 ≤ A3kα
3 + (1− δ)k3 Period 3 BC

(1)

I If given u(c), δ, β and {At}, you know how to put this on a computer and solve it:
I Sequentially substitute out budget constraints and maximize over the variables k1 and k2

I You did something like this in an earlier problem set

I Call the maximized value v1(k1)

5/24

The neoclassical growth model in 3 periods
I Suppose we take the standard neoclassical growth model with only three periods.

I Households choose between consuming and investing in the capital stock
I Capital depreciation at rate δ, and initial capital k1

I Flow utility u(c) and production function Ft(k) = Atkα

I We can write this problem with a period by period budget constraint:
v1(k1) := max

c1,c2,c3,k2,k3

u(c1) + βu(c2) + β2u(c3)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1 Period 1 BC

c2 + k3 ≤ A2kα
2 + (1− δ)k2 Period 2 BC

c3 ≤ A3kα
3 + (1− δ)k3 Period 3 BC

(1)

I If given u(c), δ, β and {At}, you know how to put this on a computer and solve it:
I Sequentially substitute out budget constraints and maximize over the variables k1 and k2

I You did something like this in an earlier problem set

I Call the maximized value v1(k1)

5/24

The neoclassical growth model in 3 periods
I Suppose we take the standard neoclassical growth model with only three periods.

I Households choose between consuming and investing in the capital stock
I Capital depreciation at rate δ, and initial capital k1

I Flow utility u(c) and production function Ft(k) = Atkα

I We can write this problem with a period by period budget constraint:
v1(k1) := max

c1,c2,c3,k2,k3

u(c1) + βu(c2) + β2u(c3)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1 Period 1 BC

c2 + k3 ≤ A2kα
2 + (1− δ)k2 Period 2 BC

c3 ≤ A3kα
3 + (1− δ)k3 Period 3 BC

(1)

I If given u(c), δ, β and {At}, you know how to put this on a computer and solve it:
I Sequentially substitute out budget constraints and maximize over the variables k1 and k2

I You did something like this in an earlier problem set

I Call the maximized value v1(k1)

5/24

The neoclassical growth model in 3 periods
I Suppose we take the standard neoclassical growth model with only three periods.

I Households choose between consuming and investing in the capital stock
I Capital depreciation at rate δ, and initial capital k1

I Flow utility u(c) and production function Ft(k) = Atkα

I We can write this problem with a period by period budget constraint:
v1(k1) := max

c1,c2,c3,k2,k3

u(c1) + βu(c2) + β2u(c3)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1 Period 1 BC

c2 + k3 ≤ A2kα
2 + (1− δ)k2 Period 2 BC

c3 ≤ A3kα
3 + (1− δ)k3 Period 3 BC

(1)

I If given u(c), δ, β and {At}, you know how to put this on a computer and solve it:
I Sequentially substitute out budget constraints and maximize over the variables k1 and k2

I You did something like this in an earlier problem set

I Call the maximized value v1(k1)

6/24

Multi-stage budgeting
I This will work for T periods when T is small, but it doesn’t generalize well...
I Instead, let’s split the problem up into multiple stages, each of which looks easier to solve
I Define v3(k3) as the value you get from starting period 3 with a capital stock k3:

v3(k3) =max
c3

u(c3)

s.t. c3 ≤ A3kα
3 + (1− δ)k3

(2)

I And define v2(k2) as the value you get from starting period 2 with a capital stock k2:
v2(k2) =max

c2,k3

u(c2) + βv3(k3)

s.t. c2 + k3 ≤ A2kα
2 + (1− δ)k2

(3)

I Notice that we now have a continuation value

I Finally, we can rewrite the first period problem as
v1(k1) =max

c1,k1

u(c1) + βv2(k2)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1

(4)

6/24

Multi-stage budgeting
I This will work for T periods when T is small, but it doesn’t generalize well...
I Instead, let’s split the problem up into multiple stages, each of which looks easier to solve
I Define v3(k3) as the value you get from starting period 3 with a capital stock k3:

v3(k3) =max
c3

u(c3)

s.t. c3 ≤ A3kα
3 + (1− δ)k3

(2)

I And define v2(k2) as the value you get from starting period 2 with a capital stock k2:
v2(k2) =max

c2,k3

u(c2) + βv3(k3)

s.t. c2 + k3 ≤ A2kα
2 + (1− δ)k2

(3)

I Notice that we now have a continuation value

I Finally, we can rewrite the first period problem as
v1(k1) =max

c1,k1

u(c1) + βv2(k2)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1

(4)

6/24

Multi-stage budgeting
I This will work for T periods when T is small, but it doesn’t generalize well...
I Instead, let’s split the problem up into multiple stages, each of which looks easier to solve
I Define v3(k3) as the value you get from starting period 3 with a capital stock k3:

v3(k3) =max
c3

u(c3)

s.t. c3 ≤ A3kα
3 + (1− δ)k3

(2)

I And define v2(k2) as the value you get from starting period 2 with a capital stock k2:
v2(k2) =max

c2,k3

u(c2) + βv3(k3)

s.t. c2 + k3 ≤ A2kα
2 + (1− δ)k2

(3)

I Notice that we now have a continuation value

I Finally, we can rewrite the first period problem as
v1(k1) =max

c1,k1

u(c1) + βv2(k2)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1

(4)

6/24

Multi-stage budgeting
I This will work for T periods when T is small, but it doesn’t generalize well...
I Instead, let’s split the problem up into multiple stages, each of which looks easier to solve
I Define v3(k3) as the value you get from starting period 3 with a capital stock k3:

v3(k3) =max
c3

u(c3)

s.t. c3 ≤ A3kα
3 + (1− δ)k3

(2)

I And define v2(k2) as the value you get from starting period 2 with a capital stock k2:
v2(k2) =max

c2,k3

u(c2) + βv3(k3)

s.t. c2 + k3 ≤ A2kα
2 + (1− δ)k2

(3)

I Notice that we now have a continuation value

I Finally, we can rewrite the first period problem as
v1(k1) =max

c1,k1

u(c1) + βv2(k2)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1

(4)

6/24

Multi-stage budgeting
I This will work for T periods when T is small, but it doesn’t generalize well...
I Instead, let’s split the problem up into multiple stages, each of which looks easier to solve
I Define v3(k3) as the value you get from starting period 3 with a capital stock k3:

v3(k3) =max
c3

u(c3)

s.t. c3 ≤ A3kα
3 + (1− δ)k3

(2)

I And define v2(k2) as the value you get from starting period 2 with a capital stock k2:
v2(k2) =max

c2,k3

u(c2) + βv3(k3)

s.t. c2 + k3 ≤ A2kα
2 + (1− δ)k2

(3)

I Notice that we now have a continuation value

I Finally, we can rewrite the first period problem as
v1(k1) =max

c1,k1

u(c1) + βv2(k2)

s.t. c1 + k2 ≤ A1kα
1 + (1− δ)k1

(4)

7/24

Why does this work?

I For simplicity, set δ = 1 (full depreciation) and look at our problem again:
v1(k1) := max

c1,c2,c3,k2,k3

u(c1) + βu(c2) + β2u(c3)

s.t. c1 + k2 ≤ A1kα
1 Period 1 BC

c2 + k3 ≤ A2kα
2 Period 2 BC

c3 ≤ A3kα
3 Period 3 BC

(5)

I If we substitute in our budget constraints, we see that the payoff at period t only depends
on the capital stock you take into the period, and choices you make later

v1(k1) = max
k2,k3

u(A1kα
1 − k2) + βu(A2kα

2 − k3) + β2u(A3kα
3)

= max
k2

u(A1kα
1 − k2) + β

[
max

k3

u(A2kα
2 − k3) + βu(A3kα

3)

]
︸ ︷︷ ︸

v2(k2)

(6)

I Our problem has a recursive structure

7/24

Why does this work?

I For simplicity, set δ = 1 (full depreciation) and look at our problem again:
v1(k1) := max

c1,c2,c3,k2,k3

u(c1) + βu(c2) + β2u(c3)

s.t. c1 + k2 ≤ A1kα
1 Period 1 BC

c2 + k3 ≤ A2kα
2 Period 2 BC

c3 ≤ A3kα
3 Period 3 BC

(5)

I If we substitute in our budget constraints, we see that the payoff at period t only depends
on the capital stock you take into the period, and choices you make later

v1(k1) = max
k2,k3

u(A1kα
1 − k2) + βu(A2kα

2 − k3) + β2u(A3kα
3)

= max
k2

u(A1kα
1 − k2) + β

[
max

k3

u(A2kα
2 − k3) + βu(A3kα

3)

]
︸ ︷︷ ︸

v2(k2)

(6)

I Our problem has a recursive structure

7/24

Why does this work?

I For simplicity, set δ = 1 (full depreciation) and look at our problem again:
v1(k1) := max

c1,c2,c3,k2,k3

u(c1) + βu(c2) + β2u(c3)

s.t. c1 + k2 ≤ A1kα
1 Period 1 BC

c2 + k3 ≤ A2kα
2 Period 2 BC

c3 ≤ A3kα
3 Period 3 BC

(5)

I If we substitute in our budget constraints, we see that the payoff at period t only depends
on the capital stock you take into the period, and choices you make later

v1(k1) = max
k2,k3

u(A1kα
1 − k2) + βu(A2kα

2 − k3) + β2u(A3kα
3)

= max
k2

u(A1kα
1 − k2) + β

[
max

k3

u(A2kα
2 − k3) + βu(A3kα

3)

]
︸ ︷︷ ︸

v2(k2)

(6)

I Our problem has a recursive structure

8/24

Finite Horizon: General Case
I You can follow this logic through to the general case where we have T periods
I You’ve seen the finite horizon problem in its sequential formulation:

v0(k0) = max
ct ,kt+1

T∑
t=0

βtu(ct)

s.t. ct + kt+1 ≤ Atkα
t + (1− δ)kt for all t ≥ 0

(7)

I This can be re-written in a recursive formulation as:
vt(k) :=max

c,k′
u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) := 0

(8)

I This is called a Bellman equation
I We’ve turned a T dimensional optimization problem into a sequence of T separate 1

dimensional optimization problems
I Note however: we have to solve eq. (8) for many different values of k

In general, it is usually still worth it to reformulate the problem this way, even in the finite horizon case

8/24

Finite Horizon: General Case
I You can follow this logic through to the general case where we have T periods
I You’ve seen the finite horizon problem in its sequential formulation:

v0(k0) = max
ct ,kt+1

T∑
t=0

βtu(ct)

s.t. ct + kt+1 ≤ Atkα
t + (1− δ)kt for all t ≥ 0

(7)

I This can be re-written in a recursive formulation as:
vt(k) :=max

c,k′
u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) := 0

(8)

I This is called a Bellman equation
I We’ve turned a T dimensional optimization problem into a sequence of T separate 1

dimensional optimization problems
I Note however: we have to solve eq. (8) for many different values of k

In general, it is usually still worth it to reformulate the problem this way, even in the finite horizon case

8/24

Finite Horizon: General Case
I You can follow this logic through to the general case where we have T periods
I You’ve seen the finite horizon problem in its sequential formulation:

v0(k0) = max
ct ,kt+1

T∑
t=0

βtu(ct)

s.t. ct + kt+1 ≤ Atkα
t + (1− δ)kt for all t ≥ 0

(7)

I This can be re-written in a recursive formulation as:
vt(k) :=max

c,k′
u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) := 0

(8)

I This is called a Bellman equation
I We’ve turned a T dimensional optimization problem into a sequence of T separate 1

dimensional optimization problems
I Note however: we have to solve eq. (8) for many different values of k

In general, it is usually still worth it to reformulate the problem this way, even in the finite horizon case

8/24

Finite Horizon: General Case
I You can follow this logic through to the general case where we have T periods
I You’ve seen the finite horizon problem in its sequential formulation:

v0(k0) = max
ct ,kt+1

T∑
t=0

βtu(ct)

s.t. ct + kt+1 ≤ Atkα
t + (1− δ)kt for all t ≥ 0

(7)

I This can be re-written in a recursive formulation as:
vt(k) :=max

c,k′
u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) := 0

(8)

I This is called a Bellman equation
I We’ve turned a T dimensional optimization problem into a sequence of T separate 1

dimensional optimization problems
I Note however: we have to solve eq. (8) for many different values of k

In general, it is usually still worth it to reformulate the problem this way, even in the finite horizon case

8/24

Finite Horizon: General Case
I You can follow this logic through to the general case where we have T periods
I You’ve seen the finite horizon problem in its sequential formulation:

v0(k0) = max
ct ,kt+1

T∑
t=0

βtu(ct)

s.t. ct + kt+1 ≤ Atkα
t + (1− δ)kt for all t ≥ 0

(7)

I This can be re-written in a recursive formulation as:
vt(k) :=max

c,k′
u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) := 0

(8)

I This is called a Bellman equation
I We’ve turned a T dimensional optimization problem into a sequence of T separate 1

dimensional optimization problems
I Note however: we have to solve eq. (8) for many different values of k

In general, it is usually still worth it to reformulate the problem this way, even in the finite horizon case

9/24

Backwards Induction
I This suggests that for finite horizon problems, at least, we can solve the problem

backwards
1. For t = T , solve eq. (8) taking vT+1(k) as given. Save the results

2. Next, for t = T − 1, solve eq. (8) taking vt+1(k) as given (you just solved for it in the
previous step)

3. Do the same for t = T − 2, then t = T − 3, and so on, until we reach t = 0.

I This algorithm is called Backwards Induction. If T is finite, it is always well-defined, and
will always finish.

I How you solve for vt depends on your preferences/the properties of the problem
I You can discretize the problem (a grid of ki values, and a grid of vt,i values)
I You can use a function approximation technique from last week, and use v̂t+1,i when you

solve at time t
I If you interpolate, you can use faster optimization methods on the inside maximization

problem

9/24

Backwards Induction
I This suggests that for finite horizon problems, at least, we can solve the problem

backwards
1. For t = T , solve eq. (8) taking vT+1(k) as given. Save the results

2. Next, for t = T − 1, solve eq. (8) taking vt+1(k) as given (you just solved for it in the
previous step)

3. Do the same for t = T − 2, then t = T − 3, and so on, until we reach t = 0.

I This algorithm is called Backwards Induction. If T is finite, it is always well-defined, and
will always finish.

I How you solve for vt depends on your preferences/the properties of the problem
I You can discretize the problem (a grid of ki values, and a grid of vt,i values)
I You can use a function approximation technique from last week, and use v̂t+1,i when you

solve at time t
I If you interpolate, you can use faster optimization methods on the inside maximization

problem

9/24

Backwards Induction
I This suggests that for finite horizon problems, at least, we can solve the problem

backwards
1. For t = T , solve eq. (8) taking vT+1(k) as given. Save the results

2. Next, for t = T − 1, solve eq. (8) taking vt+1(k) as given (you just solved for it in the
previous step)

3. Do the same for t = T − 2, then t = T − 3, and so on, until we reach t = 0.

I This algorithm is called Backwards Induction. If T is finite, it is always well-defined, and
will always finish.

I How you solve for vt depends on your preferences/the properties of the problem
I You can discretize the problem (a grid of ki values, and a grid of vt,i values)
I You can use a function approximation technique from last week, and use v̂t+1,i when you

solve at time t
I If you interpolate, you can use faster optimization methods on the inside maximization

problem

9/24

Backwards Induction
I This suggests that for finite horizon problems, at least, we can solve the problem

backwards
1. For t = T , solve eq. (8) taking vT+1(k) as given. Save the results

2. Next, for t = T − 1, solve eq. (8) taking vt+1(k) as given (you just solved for it in the
previous step)

3. Do the same for t = T − 2, then t = T − 3, and so on, until we reach t = 0.

I This algorithm is called Backwards Induction. If T is finite, it is always well-defined, and
will always finish.

I How you solve for vt depends on your preferences/the properties of the problem
I You can discretize the problem (a grid of ki values, and a grid of vt,i values)
I You can use a function approximation technique from last week, and use v̂t+1,i when you

solve at time t
I If you interpolate, you can use faster optimization methods on the inside maximization

problem

9/24

Backwards Induction
I This suggests that for finite horizon problems, at least, we can solve the problem

backwards
1. For t = T , solve eq. (8) taking vT+1(k) as given. Save the results

2. Next, for t = T − 1, solve eq. (8) taking vt+1(k) as given (you just solved for it in the
previous step)

3. Do the same for t = T − 2, then t = T − 3, and so on, until we reach t = 0.

I This algorithm is called Backwards Induction. If T is finite, it is always well-defined, and
will always finish.

I How you solve for vt depends on your preferences/the properties of the problem
I You can discretize the problem (a grid of ki values, and a grid of vt,i values)
I You can use a function approximation technique from last week, and use v̂t+1,i when you

solve at time t
I If you interpolate, you can use faster optimization methods on the inside maximization

problem

9/24

Backwards Induction
I This suggests that for finite horizon problems, at least, we can solve the problem

backwards
1. For t = T , solve eq. (8) taking vT+1(k) as given. Save the results

2. Next, for t = T − 1, solve eq. (8) taking vt+1(k) as given (you just solved for it in the
previous step)

3. Do the same for t = T − 2, then t = T − 3, and so on, until we reach t = 0.

I This algorithm is called Backwards Induction. If T is finite, it is always well-defined, and
will always finish.

I How you solve for vt depends on your preferences/the properties of the problem
I You can discretize the problem (a grid of ki values, and a grid of vt,i values)
I You can use a function approximation technique from last week, and use v̂t+1,i when you

solve at time t
I If you interpolate, you can use faster optimization methods on the inside maximization

problem

10/24

Backwards Induction: T = 10
using Parameters
p = (β = 0.9, δ = 0.1, α = 0.5, A = 1.0)
u(c) = c > 0 ? log(c) : -Inf

function update_bellman!(p, V, policy, kgrid, V0)
@unpack A, β, δ, α = p
for i in eachindex(V, kgrid)

k = kgrid[i]
z = A * k^α + (1-δ) * k
v′, i′ = findmax(eachindex(kgrid)) do ki

c = z - kgrid[ki]
return u(c) + β * V0[ki]

end
V[i] = v′
policy[i] = i′

end
end
n = 1000
kgrid = LinRange(1e-4, 10, n)
V, policy = zeros(n,11), zeros(Int, n, 11)
for i in 10:-1:1

update_bellman!(
p,V[:,i],policy[:,i],kgrid,V[:, i+1])

end

11/24

Generalizing to Other Models
I I’ve shown you this for just the neoclassical growth model, but this all generalizes to a

very wide class of models
I It will work for anything that you can write as:

vt(s) =max
x

f (s, x) + βvt+1(s ′)

s.t. s ′ = g(s, x)
x ∈ D(x)

(9)

I s denotes the state variables (carried from one period to the next)
I x denotes the control variables (picked by the decision maker)
I f (s, x) denotes the flow value (profits, utility, etc...)
I g(s, x) denotes the law of motion for the state variables
I D(x) denotes the decision set (or constraint set) of our decision maker

I The key trick to writing a problem recursively is to think carefully about which variables
are control variables, and which ones are state variables

12/24

Section 2

Infinite Horizon Dynamic Programs

13/24

Infinite horizon case

I Before, you’ve seen the neoclassical growth model written in its infinite horizon
formulation:

v(k0) = max
ct ,kt+1

∞∑
t=0

βtu(ct)

s.t. ct + kt+1 ≤ Atkα
t + (1− δ)kt for all t ≥ 0

(10)

I It turns out the two-stage budgeting logic works here as well:
v(k) =max

c,k′
u(c) + βv(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(11)

I Note: for simplicity, I’ve assumed that A is constant here.

Otherwise, we would need A to be a state variable, or do something to transform the problem along the
balanced growth path

14/24

Infinite horizon case: Why it works
To see (intuitively) why this works, let BC(k) encode the budget constraint set with starting
capital stock k

v(k0) = max
(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct) Rewrite eq. (10)

= max
(ct ,kt+1)∈BC(kt)

u(c0) +
∞∑

t=1

βtu(ct) Split off t = 0

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=1

βt−1u(ct)

)
Factor β and split the max

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct+1)

)
Reindex the sum

= max
(c0,k1)∈BC(k0)

u(c0) + βv(k1) Substitute def of v

Note: if you want to be very precise, there is a fair bit of work left to do to show that the recursively defined v
agrees with the sequentially defined v , but that is beyond the scope of this course. You have to trust me that in
general this is true. (Or go to grad school!)

14/24

Infinite horizon case: Why it works
To see (intuitively) why this works, let BC(k) encode the budget constraint set with starting
capital stock k

v(k0) = max
(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct) Rewrite eq. (10)

= max
(ct ,kt+1)∈BC(kt)

u(c0) +
∞∑

t=1

βtu(ct) Split off t = 0

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=1

βt−1u(ct)

)
Factor β and split the max

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct+1)

)
Reindex the sum

= max
(c0,k1)∈BC(k0)

u(c0) + βv(k1) Substitute def of v

Note: if you want to be very precise, there is a fair bit of work left to do to show that the recursively defined v
agrees with the sequentially defined v , but that is beyond the scope of this course. You have to trust me that in
general this is true. (Or go to grad school!)

14/24

Infinite horizon case: Why it works
To see (intuitively) why this works, let BC(k) encode the budget constraint set with starting
capital stock k

v(k0) = max
(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct) Rewrite eq. (10)

= max
(ct ,kt+1)∈BC(kt)

u(c0) +
∞∑

t=1

βtu(ct) Split off t = 0

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=1

βt−1u(ct)

)
Factor β and split the max

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct+1)

)
Reindex the sum

= max
(c0,k1)∈BC(k0)

u(c0) + βv(k1) Substitute def of v

Note: if you want to be very precise, there is a fair bit of work left to do to show that the recursively defined v
agrees with the sequentially defined v , but that is beyond the scope of this course. You have to trust me that in
general this is true. (Or go to grad school!)

14/24

Infinite horizon case: Why it works
To see (intuitively) why this works, let BC(k) encode the budget constraint set with starting
capital stock k

v(k0) = max
(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct) Rewrite eq. (10)

= max
(ct ,kt+1)∈BC(kt)

u(c0) +
∞∑

t=1

βtu(ct) Split off t = 0

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=1

βt−1u(ct)

)
Factor β and split the max

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct+1)

)
Reindex the sum

= max
(c0,k1)∈BC(k0)

u(c0) + βv(k1) Substitute def of v

Note: if you want to be very precise, there is a fair bit of work left to do to show that the recursively defined v
agrees with the sequentially defined v , but that is beyond the scope of this course. You have to trust me that in
general this is true. (Or go to grad school!)

14/24

Infinite horizon case: Why it works
To see (intuitively) why this works, let BC(k) encode the budget constraint set with starting
capital stock k

v(k0) = max
(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct) Rewrite eq. (10)

= max
(ct ,kt+1)∈BC(kt)

u(c0) +
∞∑

t=1

βtu(ct) Split off t = 0

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=1

βt−1u(ct)

)
Factor β and split the max

= max
(c0,k1)∈BC(k0)

u(c0) + β

(
max

(ct ,kt+1)∈BC(kt)

∞∑
t=0

βtu(ct+1)

)
Reindex the sum

= max
(c0,k1)∈BC(k0)

u(c0) + βv(k1) Substitute def of v

Note: if you want to be very precise, there is a fair bit of work left to do to show that the recursively defined v
agrees with the sequentially defined v , but that is beyond the scope of this course. You have to trust me that in
general this is true. (Or go to grad school!)

15/24

How to solve for v : finite horizon logic
I We now have this recursive formulation of our problem:

v(k) =max
c,k′

u(c) + βv(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(12)

but how do we actually solve it?
I Let’s go back to the finite horizon problem, and imagine that T is really large.

vt(k) =max
c,k′

u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) = h(k)

(13)

I How important is the terminal (boundary) condition VT+1 to the solution at t = 0?
I Notice that it gets discounted by β every period. If β < 1,

lim
T→∞

βT+1VT+1(k) = 0 (14)
I As T gets large, the finite horizon problem (at t = 0) looks more and more like the infinite

horizon problem

15/24

How to solve for v : finite horizon logic
I We now have this recursive formulation of our problem:

v(k) =max
c,k′

u(c) + βv(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(12)

but how do we actually solve it?
I Let’s go back to the finite horizon problem, and imagine that T is really large.

vt(k) =max
c,k′

u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) = h(k)

(13)

I How important is the terminal (boundary) condition VT+1 to the solution at t = 0?
I Notice that it gets discounted by β every period. If β < 1,

lim
T→∞

βT+1VT+1(k) = 0 (14)
I As T gets large, the finite horizon problem (at t = 0) looks more and more like the infinite

horizon problem

15/24

How to solve for v : finite horizon logic
I We now have this recursive formulation of our problem:

v(k) =max
c,k′

u(c) + βv(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(12)

but how do we actually solve it?
I Let’s go back to the finite horizon problem, and imagine that T is really large.

vt(k) =max
c,k′

u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) = h(k)

(13)

I How important is the terminal (boundary) condition VT+1 to the solution at t = 0?
I Notice that it gets discounted by β every period. If β < 1,

lim
T→∞

βT+1VT+1(k) = 0 (14)
I As T gets large, the finite horizon problem (at t = 0) looks more and more like the infinite

horizon problem

15/24

How to solve for v : finite horizon logic
I We now have this recursive formulation of our problem:

v(k) =max
c,k′

u(c) + βv(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(12)

but how do we actually solve it?
I Let’s go back to the finite horizon problem, and imagine that T is really large.

vt(k) =max
c,k′

u(c) + βvt+1(k ′) for all 0 ≤ t ≤ T

s.t. c + k ′ ≤ Atkα + (1− δ)k
vT+1(k) = h(k)

(13)

I How important is the terminal (boundary) condition VT+1 to the solution at t = 0?
I Notice that it gets discounted by β every period. If β < 1,

lim
T→∞

βT+1VT+1(k) = 0 (14)
I As T gets large, the finite horizon problem (at t = 0) looks more and more like the infinite

horizon problem

16/24

Value Function Iteration: Algorithm

I This suggests a simple approach: define
vs(k) =max

c,k′
u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

1. Start from any “terminal” condition v0(k) = h(k) you like

2. Solve the model “backwards,” just like when we did backwards induction on the finite
horizon problem. I.e, for each iteration s, solve eq. (15) with vs−1 from the previous step

3. Stop when ||vs − vs−1|| < ε for some preset tolerance level

Note: we’re indexing our iterations forward instead of backwards here, so our boundary condition is at
s = 0 not t = T

I This algorithm is called Value Function Iteration

17/24

Value Function Iteration
Convergence and Uniqueness

v(k) =max
c,k′

u(c) + βv(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(12)

I You can show that most functions defined this way have a unique solution
The details are complicated, but this will basically be true anytime you have a max operator on the LHS, a
well-behaved constraint set, and a discount rate β < 1.

I will not ever ask you about problems where the recursive formulation doesn’t yield a unique solution, or
where value function iteration fails to converge.

I Moreover, value function iteration converges geometrically to the true solution at a rate
proportional to β

I When β is close to 1, the problem converges more slowly

I This means that for appropriately defined problems, you can always use value function
iteration, and it will always converge to the unique solution

18/24

VFI in Practice

function solve!(p, kgrid, V0; tol = 1e-12)
V = similar(V0)
policy = zeros(Int, size(V0))
iter = 0
while true

iter += 1
update_bellman!(

p, V, policy, kgrid, V0
)
converged(V, V0, tol) && break
V0 .= V

end
return (; V, policy, iter)

end

function converged(X, X0, tol)
return maximum(abs.(X-X0)) < tol

end

solve!(p, LinRange(1e-4, 10, 100), zeros(100))

19/24

Value Function Iteration is Slow

I Usually requires several hundred (or more) iterations to converge

I Inside each iteration, we have to repeatedly solve a costly maximization problem

I Like all the methods we’ll see here, suffers badly from the curse of dimensionality:

I Suppose your state space is multi-dimensional You need to put a grid of values on each
dimension.

I If you have n dimensions, and your grid G is

G = G1 × G2 × · · · × Gn

then the total number of grid points is |G| =
∏n

i=1 |Gi |

I If n is 6, and |Gi | = 10 (a coarse grid) then we have to solve 1 million maximization
problems at every iteration. This gets very costly very fast

20/24

Speeding it up: Policy Function Iteration

vs(k) =max
c,k′

u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

I We started with eq. (15), however, it is very costly to compute the maximization step
I When we are close to the true solution, the optimal policy will not be changing very much
I Key Idea: What if we skipped the maximization step, and just used the optimal c?, k ′?

from the previous iteration?

20/24

Speeding it up: Policy Function Iteration

vs(k) =max
c,k′

u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

I We started with eq. (15), however, it is very costly to compute the maximization step
I When we are close to the true solution, the optimal policy will not be changing very much
I Key Idea: What if we skipped the maximization step, and just used the optimal c?, k ′?

from the previous iteration?

20/24

Speeding it up: Policy Function Iteration
vs(k) =max

c,k′
u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

I Key Idea: What if we skipped the maximization step, and just used the optimal c?, k ′?

from the previous iteration?
I Algorithm:

1. Start from any “terminal” condition v0(k) = h(k) you like

2. Solve the model “backwards,” just like when we did backwards induction on the finite
horizon problem. I.e, for each iteration s, solve eq. (15) with vs−1 from the previous step,
but save the optimal policy (c?

s (k), k′?
s (k)) and the solution as v0

s (k)

3. For i = 1, . . . , n, set v i
s(k) := u(c?

s (k)) + βv i−1
s (k′?

s (k))

4. Set vs(k) := vn
s (k)

5. Stop when ||vs − vs−1|| < ε for some preset tolerance level

In general, this tends to be much faster than value function iteration, although you have to be careful.
Convergence is not guaranteed

20/24

Speeding it up: Policy Function Iteration
vs(k) =max

c,k′
u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

I Key Idea: What if we skipped the maximization step, and just used the optimal c?, k ′?

from the previous iteration?
I Algorithm:

1. Start from any “terminal” condition v0(k) = h(k) you like

2. Solve the model “backwards,” just like when we did backwards induction on the finite
horizon problem. I.e, for each iteration s, solve eq. (15) with vs−1 from the previous step,
but save the optimal policy (c?

s (k), k′?
s (k)) and the solution as v0

s (k)

3. For i = 1, . . . , n, set v i
s(k) := u(c?

s (k)) + βv i−1
s (k′?

s (k))

4. Set vs(k) := vn
s (k)

5. Stop when ||vs − vs−1|| < ε for some preset tolerance level

In general, this tends to be much faster than value function iteration, although you have to be careful.
Convergence is not guaranteed

20/24

Speeding it up: Policy Function Iteration
vs(k) =max

c,k′
u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

I Key Idea: What if we skipped the maximization step, and just used the optimal c?, k ′?

from the previous iteration?
I Algorithm:

1. Start from any “terminal” condition v0(k) = h(k) you like

2. Solve the model “backwards,” just like when we did backwards induction on the finite
horizon problem. I.e, for each iteration s, solve eq. (15) with vs−1 from the previous step,
but save the optimal policy (c?

s (k), k′?
s (k)) and the solution as v0

s (k)

3. For i = 1, . . . , n, set v i
s(k) := u(c?

s (k)) + βv i−1
s (k′?

s (k))

4. Set vs(k) := vn
s (k)

5. Stop when ||vs − vs−1|| < ε for some preset tolerance level

In general, this tends to be much faster than value function iteration, although you have to be careful.
Convergence is not guaranteed

20/24

Speeding it up: Policy Function Iteration
vs(k) =max

c,k′
u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

I Key Idea: What if we skipped the maximization step, and just used the optimal c?, k ′?

from the previous iteration?
I Algorithm:

1. Start from any “terminal” condition v0(k) = h(k) you like

2. Solve the model “backwards,” just like when we did backwards induction on the finite
horizon problem. I.e, for each iteration s, solve eq. (15) with vs−1 from the previous step,
but save the optimal policy (c?

s (k), k′?
s (k)) and the solution as v0

s (k)

3. For i = 1, . . . , n, set v i
s(k) := u(c?

s (k)) + βv i−1
s (k′?

s (k))

4. Set vs(k) := vn
s (k)

5. Stop when ||vs − vs−1|| < ε for some preset tolerance level

In general, this tends to be much faster than value function iteration, although you have to be careful.
Convergence is not guaranteed

20/24

Speeding it up: Policy Function Iteration
vs(k) =max

c,k′
u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

I Key Idea: What if we skipped the maximization step, and just used the optimal c?, k ′?

from the previous iteration?
I Algorithm:

1. Start from any “terminal” condition v0(k) = h(k) you like

2. Solve the model “backwards,” just like when we did backwards induction on the finite
horizon problem. I.e, for each iteration s, solve eq. (15) with vs−1 from the previous step,
but save the optimal policy (c?

s (k), k′?
s (k)) and the solution as v0

s (k)

3. For i = 1, . . . , n, set v i
s(k) := u(c?

s (k)) + βv i−1
s (k′?

s (k))

4. Set vs(k) := vn
s (k)

5. Stop when ||vs − vs−1|| < ε for some preset tolerance level

In general, this tends to be much faster than value function iteration, although you have to be careful.
Convergence is not guaranteed

20/24

Speeding it up: Policy Function Iteration
vs(k) =max

c,k′
u(c) + βvs−1(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(15)

I Key Idea: What if we skipped the maximization step, and just used the optimal c?, k ′?

from the previous iteration?
I Algorithm:

1. Start from any “terminal” condition v0(k) = h(k) you like

2. Solve the model “backwards,” just like when we did backwards induction on the finite
horizon problem. I.e, for each iteration s, solve eq. (15) with vs−1 from the previous step,
but save the optimal policy (c?

s (k), k′?
s (k)) and the solution as v0

s (k)

3. For i = 1, . . . , n, set v i
s(k) := u(c?

s (k)) + βv i−1
s (k′?

s (k))

4. Set vs(k) := vn
s (k)

5. Stop when ||vs − vs−1|| < ε for some preset tolerance level

In general, this tends to be much faster than value function iteration, although you have to be careful.
Convergence is not guaranteed

21/24

Section 3

Extensions

22/24

Stochastic Productivity
I Consider the neoclassical growth model, but where A is a persistent, log-normal shock

v(k,A) =max
c,k′

u(c)+βE [v(k ′,A′)|A]

s.t. c + k ′ ≤ Akα + (1− δ)k
log(A′) = ρ log(A) + ε

ε ∼ N(0, σ)

(16)

I Key Difference: now we have another state variable, and we have to take expectations
over A′ tomorrow.

I How do we handle the expectations operator?
I Naive Approach: simply replace expectations with an integral and calculate it numerically

in every function call:

E
[
v(k′,A′)

∣∣A] = ∫ ∞

−∞
v(k′, exp(ρ log(A) + ε))f (ε)dε (17)

where f is the pdf of ε
I This will work, but that integral is costly to compute and you will have to calculate it many,

many, many times

22/24

Stochastic Productivity
I Consider the neoclassical growth model, but where A is a persistent, log-normal shock

v(k,A) =max
c,k′

u(c)+βE [v(k ′,A′)|A]

s.t. c + k ′ ≤ Akα + (1− δ)k
log(A′) = ρ log(A) + ε

ε ∼ N(0, σ)

(16)

I Key Difference: now we have another state variable, and we have to take expectations
over A′ tomorrow.

I How do we handle the expectations operator?
I Naive Approach: simply replace expectations with an integral and calculate it numerically

in every function call:

E
[
v(k′,A′)

∣∣A] = ∫ ∞

−∞
v(k′, exp(ρ log(A) + ε))f (ε)dε (17)

where f is the pdf of ε
I This will work, but that integral is costly to compute and you will have to calculate it many,

many, many times

22/24

Stochastic Productivity
I Consider the neoclassical growth model, but where A is a persistent, log-normal shock

v(k,A) =max
c,k′

u(c)+βE [v(k ′,A′)|A]

s.t. c + k ′ ≤ Akα + (1− δ)k
log(A′) = ρ log(A) + ε

ε ∼ N(0, σ)

(16)

I Key Difference: now we have another state variable, and we have to take expectations
over A′ tomorrow.

I How do we handle the expectations operator?
I Naive Approach: simply replace expectations with an integral and calculate it numerically

in every function call:

E
[
v(k′,A′)

∣∣A] = ∫ ∞

−∞
v(k′, exp(ρ log(A) + ε))f (ε)dε (17)

where f is the pdf of ε
I This will work, but that integral is costly to compute and you will have to calculate it many,

many, many times

23/24

Expectations Operator: Better Approach
Discretize the AR(1)

I Remember from Week 4 that we can discretize an AR(1) process. I.e., we find a grid of
Ai

NA
i=1 and a Markov transition P matrix such that

Pr(A′ = Ai |Aj) = Pij

is a good discrete approximation of our process. You should use Rouwenhorst’s Method to find
this. An implementation is available in QuantEcon (both for Python and Julia)

I Note that I’ve defined this such that the columns of P sum to 1 (make sure you check
this, otherwise you need to use the transpose of P)

I Now we can write our expectations operator as

E [v(k ′,A′) | A = Aj] =

NA∑
i=1

Pr(A′ = Ai | Aj)v(k ′,Ai) =

NA∑
i=1

v(k ′,Ai)Pij (18)

I Whenever you see a sum like this, you should be thinking about matrix multiplication

23/24

Expectations Operator: Better Approach
Discretize the AR(1)

I Remember from Week 4 that we can discretize an AR(1) process. I.e., we find a grid of
Ai

NA
i=1 and a Markov transition P matrix such that

Pr(A′ = Ai |Aj) = Pij

is a good discrete approximation of our process. You should use Rouwenhorst’s Method to find
this. An implementation is available in QuantEcon (both for Python and Julia)

I Note that I’ve defined this such that the columns of P sum to 1 (make sure you check
this, otherwise you need to use the transpose of P)

I Now we can write our expectations operator as

E [v(k ′,A′) | A = Aj] =

NA∑
i=1

Pr(A′ = Ai | Aj)v(k ′,Ai) =

NA∑
i=1

v(k ′,Ai)Pij (18)

I Whenever you see a sum like this, you should be thinking about matrix multiplication

24/24

Expectations as a Matrix Product
I Suppose we want to calculate this expectation for a vector of {ks}Nk

s=1.
I If we stack them up in a matrix: Vsj = v(ks ,Aj) then we can compute

EV :=

v(k1,A1) v(k1,A2) . . . v(k1,ANA)
v(k2,A1) v(k2,A2) . . . v(k2,ANA)

...
...

. . .
...

v(kNk ,A1) v(kNk ,A2) . . . v(kNk ,ANA)

︸ ︷︷ ︸

V

P1,1 P1,2 . . . P1,NA

P2,1 P2,2 . . . P2,NA
...

...
. . .

...
PNA,1 PNA,2 . . . PNA,NA

︸ ︷︷ ︸

P

I You can check that

EVsj =

NA∑
i=1

v(ks ,Ai)Pij =

NA∑
i=1

v(ks ,Ai)Pr(A′ = Ai |Aj) = E [v(ks ,A)|Aj]

I In other words, we can calculate our expectations for all the relevant values of k just once
per value function iteration loop

I To evaluate k off-grid, we can use interpolation once on EV instead of V
I In general, this delivers huge speed gains

24/24

Expectations as a Matrix Product
I Suppose we want to calculate this expectation for a vector of {ks}Nk

s=1.
I If we stack them up in a matrix: Vsj = v(ks ,Aj) then we can compute

EV :=

v(k1,A1) v(k1,A2) . . . v(k1,ANA)
v(k2,A1) v(k2,A2) . . . v(k2,ANA)

...
...

. . .
...

v(kNk ,A1) v(kNk ,A2) . . . v(kNk ,ANA)

︸ ︷︷ ︸

V

P1,1 P1,2 . . . P1,NA

P2,1 P2,2 . . . P2,NA
...

...
. . .

...
PNA,1 PNA,2 . . . PNA,NA

︸ ︷︷ ︸

P

I You can check that

EVsj =

NA∑
i=1

v(ks ,Ai)Pij =

NA∑
i=1

v(ks ,Ai)Pr(A′ = Ai |Aj) = E [v(ks ,A)|Aj]

I In other words, we can calculate our expectations for all the relevant values of k just once
per value function iteration loop

I To evaluate k off-grid, we can use interpolation once on EV instead of V
I In general, this delivers huge speed gains

24/24

Expectations as a Matrix Product
I Suppose we want to calculate this expectation for a vector of {ks}Nk

s=1.
I If we stack them up in a matrix: Vsj = v(ks ,Aj) then we can compute

EV :=

v(k1,A1) v(k1,A2) . . . v(k1,ANA)
v(k2,A1) v(k2,A2) . . . v(k2,ANA)

...
...

. . .
...

v(kNk ,A1) v(kNk ,A2) . . . v(kNk ,ANA)

︸ ︷︷ ︸

V

P1,1 P1,2 . . . P1,NA

P2,1 P2,2 . . . P2,NA
...

...
. . .

...
PNA,1 PNA,2 . . . PNA,NA

︸ ︷︷ ︸

P

I You can check that

EVsj =

NA∑
i=1

v(ks ,Ai)Pij =

NA∑
i=1

v(ks ,Ai)Pr(A′ = Ai |Aj) = E [v(ks ,A)|Aj]

I In other words, we can calculate our expectations for all the relevant values of k just once
per value function iteration loop

I To evaluate k off-grid, we can use interpolation once on EV instead of V
I In general, this delivers huge speed gains

	Finite Horizon Dynamic Programs
	Infinite Horizon Dynamic Programs
	Extensions

