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Using our models

I There are three main reasons why a solved model is useful:

1. Understanding the mechanisms: sometimes, plotting the solutions or simulating data can
be illuminating about how a model works

2. Estimating Parameters: We want to choose parameters of the model in a sensible way so
that our model matches the data

3. Counterfactual Exercises: What happens if we change something in the model? What does
it predict? How does it change welfare? Other metrics we care about?

I It turns out that to do all of this, we need to be able to generate fake (simulated) data
from our models
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Section 1

Simulating Data from Models
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Simulating Data: Deterministic Case

I Consider the non-stochastic neoclassical growth model we saw last week:
v(k) =max

c,k′
u(c) + βv(k ′)

s.t. c + k ′ ≤ Akα + (1− δ)k
(1)

I A solution to this model will give us some representation of v(k) as well as policy
functions gc(k) and gk(k), where

v(k) = u(gc(k)) + βv(gk(k))

I Suppose we start at an arbitrary k0.

I Since the model is deterministic, generating “data” from the model is just a matter of
stepping our value k0 forward one period at a time using our policy functions

kt = gk(kt−1)

ct = gc(kt)
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Stepping the model forward
function simulate(p, policy, kgrid, ki0;

T = 40
)

@unpack A, α, δ = p
C = zeros(T); K = zeros(T)
Ki= zeros(Int, T); Y = zeros(T)

Ki[1] = ki0
for t in 1:T

# Capital and Output
K[t] = kgrid[Ki[t]]
Y[t] = A * K[t]^α
# Consumption today
z = Y[t] + (1-δ) * K[t]
ki′ = policy[Ki[t]]
k′ = kgrid[ki′]
C[t] = z - k′
# Investment grid tomorrow
if t < T

Ki[t+1] = ki′
end

end
return (; C, K, Ki, Y)

end
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Non-deterministic case: Simulate data
I Suppose that we return to the case of our stochastic neoclassical growth model:

v(k,A) =max
c,k′

u(c)+βE [v(k ′,A′)|A]

s.t. c + k ′ ≤ Akα + (1− δ)k
log(A′) = ρ log(A) + ε

ε ∼ N(0, σ)

(2)

I How can we simulate data from this model?
1. Solve the model, and recover the policy rules gc(k,A) and gk(k,A)

2. Start from (k0,A0)

3. Draw a random sequence of At that satisfy our process for A

4. For each t > 0, set
kt = gk(kt−1,At−1)

ct = gc(kt ,At)
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Refresher: Drawing random variables

I Suppose you have a cumulative distribution function FX : X ⊂ R → [0, 1]

I How can you generate data that is distributed according to F?

I Recall that if X ∼ FX then FX (x) = Pr(X ≤ x)

I But note that Z = FX (x) is also a random variable. What is its distribution FZ ?

I Observe that since FX is strictly increasing, it has an inverse F−1
X . So,

FZ (z) = Pr(Z ≤ z) = Pr(FX (X) ≤ z) = Pr(X ≤ F−1
X (z)) = FX (F−1

X (z)) = z

I But this is exactly the cdf of the uniform distribution on [0,1]

I FX (X) is uniformly distributed!
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Refresher: Drawing random variables

I This means that as long as we know how to take pseudo-random draws from a uniform
distribution, we can draw random numbers from any distribution where we know the cdf

I Follow the steps:
1. Draw z ∼ U[0, 1]

2. Find x such that FX (x) = z

This may require solving a root finding problem if you don’t have a formula for F−1
X

3. Call x your random draw from F

I If there are no values of X that show up with probability 0, then FX is strictly increasing
and step 2 is always well-defined

I If there are values of X that occur with probability 0, then just pick x as the smallest x
such that FX (x) = z.
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Refresher: Drawing random variables
Discrete variables

I This process is particularly straightforward if we have a discrete random variable
X ∈ {X1,X2, . . . ,Xn} where Pr(X = Xi) = pi

where X1 < X2 < · · · < Xn

I Observe that we can write the cdf of X as a cumulative sum:

Fi := F (Xi) = Pr(X ≤ Xi) =

i∑
j=1

Pr(X = Xj) =

i∑
j=1

pj

I This means if we draw z ∼ U[0, 1], “inverting” F is just a matter of finding the smallest i
such that z ≤ Fi

I Since Fi are already a sorted vector, this is just searching through a sorted list (use
searchsortedfirst in Julia)



9/26

Refresher: Drawing random variables
Discrete variables

I This process is particularly straightforward if we have a discrete random variable
X ∈ {X1,X2, . . . ,Xn} where Pr(X = Xi) = pi

where X1 < X2 < · · · < Xn

I Observe that we can write the cdf of X as a cumulative sum:

Fi := F (Xi) = Pr(X ≤ Xi) =
i∑

j=1

Pr(X = Xj) =
i∑

j=1

pj

I This means if we draw z ∼ U[0, 1], “inverting” F is just a matter of finding the smallest i
such that z ≤ Fi

I Since Fi are already a sorted vector, this is just searching through a sorted list (use
searchsortedfirst in Julia)



9/26

Refresher: Drawing random variables
Discrete variables

I This process is particularly straightforward if we have a discrete random variable
X ∈ {X1,X2, . . . ,Xn} where Pr(X = Xi) = pi

where X1 < X2 < · · · < Xn

I Observe that we can write the cdf of X as a cumulative sum:

Fi := F (Xi) = Pr(X ≤ Xi) =
i∑

j=1

Pr(X = Xj) =
i∑

j=1

pj

I This means if we draw z ∼ U[0, 1], “inverting” F is just a matter of finding the smallest i
such that z ≤ Fi

I Since Fi are already a sorted vector, this is just searching through a sorted list (use
searchsortedfirst in Julia)



10/26

Refresher: Drawing random variables
Discretized AR(1)

## Simulate and plot and AR(1)
mc = rouwenhorst(30, 0.9, 0.2)
grid = mc.state_values
P = mc.p'

function simulate_markov(grid, P; T = 100)
n = length(grid)
i = rand(1:n)
X = zeros(T)
Pc = cumsum(P, dims=1)
for t in 1:T

z = rand()
Fi = @view Pc[:, i]
i = searchsortedfirst(Fi, z)
X[t] = grid[i]

end
return X

end
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Stochastic Neoclassical Growth: Revisited
Outer Loop

function solve_vfi_stochastic!(p, m; tol = 1e-12, maxiter = 1000)
@unpack Na, ρ, σ = p
@unpack kgrid, agrid, V0, V, P, policy = m
V .= V0
iter = 0
while true

iter += 1
# Step 1: Calculate Expectations
EV = V * P

# Step 2: Update Bellman Equation
update_bellman_stochastic!(p, m, EV)

# Step 3: Check for convergence
ϵ = maximum(abs.(V - V0))
ϵ < tol && break
iter >= maxiter && break
V0 .= V

end
return (; V, policy, iter, kgrid, agrid, P)

end
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Stochastic Neoclassical Growth: Revisited
Inner Loop

function update_bellman_stochastic!(p, m, EV)
@unpack V, kgrid, agrid, policy = m
@unpack α, δ, β, Na, Nk = p
for ai in 1:Na, ki in 1:Nk

# Capital and productivity levels
k = kgrid[ki]
A = exp(agrid[ai])

# Cash on hands
z = A * k^α + (1-δ) * k
k′ = kgrid
c = z .- k′

# Do a vectorized grid search
vmax, pol = findmax(

u.(c) .+ β .* EV[:, ai]
)
# Store the max values and policies
V[ki, ai] = vmax
policy[ki, ai] = pol

end
return

end
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How do we simulate?
function simulate_stochastic(p, m; T = 50)

@unpack kgrid, agrid, P, policy = m
@unpack α, δ = p
# Simulate the markov chain and initialize
A = simulate_markov(agrid, P,

T = 100 + T)[101:end]
C = zeros(T); K = zeros(T);
Y = zeros(T); Ki = zeros(Int, T)
Ki[1] = searchsortedfirst(kgrid, 12.0)
# Step our policy function forward
for t in 1:T

K[t] = kgrid[Ki[t]]
Y[t] = exp(A[t]) * K[t]^α
z = Y[t] + (1-δ) * K[t]
Ai = searchsortedfirst(agrid, A[t])
ki′ = policy[Ki[t], Ai]
k′ = kgrid[ki′]
C[t] = z - k′
if t < T

Ki[t+1] = ki′
end

end
return (; A, C, K, Y, Ki)

end
Kt is smoother than Ct which is smoother than At
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Section 2

Estimating Models
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How do we pick our parameters in OLS?

I When you took econometrics, you learned how to estimate:
yi = Xiβ + εi

where Xi ∈ Rk , and β ∈ Rk

I Remember that OLS chooses β̂ to minimize the sum of squared residuals:

β̂ ∈ arg min
β

n∑
i=1

(yi − Xiβ)
2

I It turns out, we can understand OLS as choosing β̂ in order to replicate a set of
“moments” in our data

A “moment” here means any function mapping data (actual data or predicted data) to a real number.
Averages, variances, covariances, etc... are all data moments

I This called the method of moments interpretation of OLS
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Method of Moments: OLS
I To make this easier to see, let’s stack up all our dependent observations yi in a vector y ,

and all our regressors Xi in a matrix X .
I We can write SSR(β) now as a matrix product:

SSR(β) = (y − Xβ)T (y − Xβ)

I We can derive the OLS normal equations (first order conditions) by setting ∂SSR
∂β = 0:

XT (y − Xβ) = 0 (3)

I If we substitute back in ε̂ = y − Xβ, we get the familiar moment conditions:

0 = XT ε̂ =

n∑
i=1

Xi ε̂i ⇐⇒ Cov(Xi , ε̂i) = 0 ⇐⇒ E [Xi ε̂i ] = 0

Note: there are k different equations here, since Xi ∈ Rk

I OLS chooses β so that the covariance between the predicted residuals and the regressors
are zero.

I This is just a set of k different “moments”
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Interpreting OLS Method of Moments

I We can now write our OLS “moment function” m : Rk → Rk

m(β) = XT (y − Xβ)

I Since there is a unique solution to m(β) = 0, we could imagine solving the following
problem instead:

β̂ = arg min
β

m(β)T m(β) (4)

I This is called generalized method of moments: it generalizes OLS to a much broader class
of statistical models
I In general, you can write IV regressions as a method of moments problem (with a different

moment condition)
I You can use a moment function which is nonlinear
I Crucially, you can use a moment function which involves simulated data from a structural

model
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Stochastic Neoclassical Growth Model: Estimating ρ

I Return to our neoclassical growth model with stochastic productivity
v(k,A) =max

c,k′
u(c)+βE [v(k ′,A′)|A]

s.t. c + k ′ ≤ Akα + (1− δ)k
log(A′) = ρ log(A) + ε

ε ∼ N(0, σ)

(2)

I Let’s say we want to choose a value of ρ, but we don’t want to just make something up.
We want to estimate it to match the data.

I We know, intuitively, that ρ controls the persistence of shocks to productivity
I If we directly observed At , we could estimate it with a linear regression.
I What if, instead, we only observe Ct and Yt?
I Since they both move in step with At , a higher ρ should give us a more persistent Ct and Yt
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ρ controls Corr(Ct ,Ct−1) too

function compute_moments(p; T = 1_000_000)
@unpack Nk, Na = p
mc = rouwenhorst(Na, p.ρ, p.σ)
m = (

V = zeros(Nk, Na),
V0 = zeros(Nk, Na),
policy = zeros(Int, Nk, Na),
kgrid = LinRange(1e-1, 30, Nk),
agrid = mc.state_values,
P = mc.p'

)
solve_vfi_stochastic!(p, m)
sim = simulate_stochastic(p, m; T)
@unpack C = sim

# Calculate autocorrelation of C
ρC = cor(C[1:end-1], C[2:end])
return ρC

end
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ρ controls Corr(Ct ,Ct−1) too
I What does this tell us?

I Autocorrelation of consumption increases
monotonically with ρ,
I We should be able to back out a value of

ρ for any “reasonable” value of
autocorrelation in consumption that we
observe in the data

I Reasonable means something very specific
here:
I with the other parameters we’ve set, we

cannot get the model to generate
autocorrelation in consumption below
around 0.6

I It’s possible we could if we changed the
curvature of the utility function (i.e,
made the household less risk averse, so
they smooth consumption less)
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autocorrelation in consumption below
around 0.6

I It’s possible we could if we changed the
curvature of the utility function (i.e,
made the household less risk averse, so
they smooth consumption less)
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Estimating ρ

I Suppose you were told (or calculated yourself) that consumption has an autocorrelation
coefficient of 0.9

I made this number up – it’s just an example

I How would we choose ρ so that our model matches the data?
I Option 1: treat this as a root finding problem

I Works fine for just 1 parameters
I Runs into issues for many parameters
I Simulated moments are either very hard to differentiate, or not differentiable at all, so you

will find it hard to calculate a gradient/hessian
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Estimating ρ

I Option 2: treat this as an optimization
problem

ρ̂ = arg min ρ (m(ρ)− ρC)
2 (5)

where m(ρ) is the model simulated ρC
(autocorrelation of consumption)

I This gives the same answer in the 1D case

I Generalizes better if you want to estimate
many parameters at once
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Simulated Method of Moments
I If we generalize this to several different moments from our data/model, we arrive at the

algorithm called Simulated Method of Moments
I Suppose our model has a vector of k parameters θ ∈ Rk , which we want to estimate
I Suppose further, we have a set of n ≥ k moments m ∈ Rn (calculated in the data) that

are “informative” about the underlying parameters
I Let m : Rk → Rk be the function that

1. Takes the parameter θ, and solves our underlying model

2. Simulates the model, and

3. Calculates the model analogue of the moments in the data

I We choose our estimate θ̂ to solve
θ̂ ∈ arg max

θ
(m(θ)− m)

T W (m(θ)− m) (6)

where W is a weighting matrix that controls how important each moment is.

For this course, you will generally just set W = I, and then this is just the sum of squared deviations of
model moments from data moments
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Simulated Method of Moments: Very computationally intensive

I In general, you have to use a derivative free optimization algorithm (like Nelder-Mead) to
solve this problem (if you have even 4 or 5 parameters, this means 100s or 1000s of
function evaluations)

I Even worse, there are local minima everywhere.

Often need to restart optimization from many different starting values and repeat to be sure you’ve found
global min

I With model solves inside every function evaluation, this could easily run for
hours/days/weeks, depending on how large the problem is

Obviously, I won’t ask you to solve a problem that has to run for days...

I You really want to try your best to get blazing fast performance when solving your model
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Simulated Method of Moments: Very powerful

I All you need are “informative” moments
I If f (θ) is your objective, then you need Df (θ?) to have full rank (be invertible) at the true

parameters

I Any statistic can be “informative” if it captures the right thing (although choosing
moments is a bit of an art)

You can use aggregate statistics, which is great for working with confidential microdata

I In principle you can use regression coefficients that are badly identified, so long as the
identification problem you’re worried about in the data is also present in the model
Example: labor search models with unobserved heterogeneity in human capital. There is selection on who
is hired out of unemployment (since employers see your skill)

As long as you model the unobserved heterogeneity in human capital, you can make use of a regression of
earnings just out of unemployment on duration of unemployment
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Summary

I Saw today that you can simulate your model fairly easily once you’ve solved it

Just need to repeatedly apply the policy functions you’ve solved for

I Simulating the model can be extremely helpful for estimating your model to match the
data

I Simulated method of moments is a very powerful tool for estimating structural models

I Only requires that parameters be “informative” about something in the data to estimate
them

I It’s generally quite tricky to pick sensible moments for estimation (something of an art)

I Next week, we’ll return to see how we can use these models to run policy counterfactuals
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