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Logistics

I Lectures: cover the material – no code, mostly theory

I Labs: Cover examples and code, work on problem sets. Run through Week 10

I Problem Sets: you have four more to go

I Take Home Exam: we will be announcing the dates shortly!

I Office Hours (Jacob): Fridays 11:00 - 12:00, Location: 31 Buccleuch Place, 2.11
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Numerical Optimization is Essential

I Nearly every economics problem that we write down involves some sort of optimization
problem
I Utility maximization: Demand for several goods, consumption vs. savings, leisure vs.

consumption,
I Profit maximization
I Planners’ problem
I Best response in a game (nash equilibria)
I etc...

I But optimization shows up in lots of other places!
I Most (all?) estimators in statistics/econometrics are parameters that solve an appropriate

minimization problem

I It shouldn’t surprise you that when we can’t solve these problems analytically, we turn to a
numerical analysis of the problem
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Types of Optimization Problems

I Local vs. Global

I Univariate vs. Multivariate

I Linear vs. Nonlinear

I Constrained vs. Unconstrained
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Section 1

Unconstrained Optimization: Univariate
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Problem Setup

Suppose we’re given some function f : R → R, and we’re asked to solve:
min
x∈R

f (x) (1)

I We haven’t been told anything yet about f .
I It’s not necessarily differentiable
I We certainly don’t have enough to get an analytic solution

I This problem seems simple, but a surprising number of economic problems can be solved
with just univariate optimization

I These methods also form the building blocks for some multivariate algorithms, so it is
important to have fast methods to solve problems like this
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Bracketing Method

x

f (x)

a b cm1 m2

f (b)

I Suppose that f : R → R is continuous and,

I Suppose we’ve found points a, b and c ∈ R
such that

f (a) > f (b) and f (c) > f (b) (2)

I We know that somewhere in (a, c) there is a
minimum value Why? Well, since f is continuous,
and [a, c] is compact, we know a minimum exists, and
since f (b) < f (a) and f (b) < f (c), it cannot attain its
minimum at the boundary

I Can we refine this to find a minimum?

I Note: ideally, we want to find m1 since it is the
global minimum
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Bracketing Method: Algorithm
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Algorithm 1 Bracketing Algorithm
Require: a < b < c such that f (a) > f (b) and f (c) > f (b)
1: while c − a > ε do . For ε > 0
2: if b − a < c − b then . Choose a test point
3: d ← (b + c)/2
4: else
5: d ← (a + b)/2
6: end if
7: if d > b then
8: if f (d) ≥ f (b) then
9: (a, b, c)← (a, b, d) . d is our new c

10: else if f (d) < f (b) then
11: (a, b, c)← (b, d, c) . d is our new candidate
12: end if
13: else if d < b then
14: if f (d) ≥ f (b) then
15: (a, b, c)← (d, b, c) . d is our new a
16: else if f (d) < f (b) then
17: (a, b, c)← (a, d, b) . d is our new candidate
18: end if
19: end if
20: end while
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Bracketing Method: Algorithm
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I If we continue this process, the algorithm will
eventually converge.
I At every step, we always choose a and c so

that we are bracketing a minimum
I Our candidate point b always has f (b) < f (a)

and f (c).

I The convergence rate is quite slow compared to
other algorithms, but it will always work for any
continuous, bounded function on a finite
interval.

I Notice, however, that we missed the true global
minimum of the function.

I The bracketing algorithm is guaranteed to find
a local minimum, but not necessarily the global
minimum.

I This is not a problem if the objective function
is convex (since the minimum is unique).
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Other Gradient Free Algorithms

Bracketing is slow, but we can often do better, even without derivative based methods
I Golden-section search

I This is the same as the bracketing algorithm, but chooses our candidate and test points
differently

I Instead of choosing the midpoint of the intervals, we choose b = c − (b − a)/φ and
d = a + (c − b)/φ where φ = (1 +

√
5)/2

Note that φ is the golden ratio

I This keeps the size of the intervals at a constant ratio, which ensures that we are doing a
better job of sampling the interval for the minimum (and avoids taking a large number of
steps that are inefficiently close together)

I Still has slow convergence, but it’s guaranteed just like in the bracketing case.
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Other Gradient Free Algorithms

I Successive Parabolic Interpolation
I Generates new candidate points by fitting a parabola to the last three points and choosing

the minimum of the parabola as the new candidate
I In general, this is a much faster algorithm than the bracketing methods, however it can often

fail to converge if the function is not well behaved

I Brent’s method: combines SPI with Golden Section Search
I Attempts to take steps with successive parabolic interpolation
I Falls back to the Golden-section search method if that fails.
I This means it retains the best case properties of SPI, and often is your best bet for

derivative free optimization over a single variable.
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Newton’s Method

I We can do much better, however, if we are willing to use the derivatives of f
I Consider a point xk , and let’s do a second order Taylor approximation of f around xk :

pk(x) := f (xk) + f ′(xk)(x − xk) +
1
2 f ′′(xk)(x − xk)

2 (3)

I Suppose that f ′′(xk) > 0: then pk(x) is convex, and the minimum of pk(x) is at

xk+1 = xk − f ′(xk)

f ′′(xk)
(4)

I If pk is a good global approximation of f , then xk+1 should be close to the true minimum
Or at least, closer than xk

I If we start with a good enough guess x0, the sequence defined by this procedure will
converge to the true minimum of f

Note, however, that with a bad guess, Newton’s method does not need to converge at all
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Section 2

Unconstrained Optimization: Multivariate
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Problem
I Suppose that f : Rn → R, and we want to solve the problem

max
x∈Rn

f (x) (5)

I We know that if f is differentiable, a necessary condition for optimality is that:
Df (x) = 0 (6)

If you haven’t seen this notation before, read Df (x)T = ∇f (x) if f : Rn → R, or as f ′(x) if n = 1.

In general, if f : Rn → Rm, then Df (x) is an m × n matrix, where (Df (x))ij =
∂fi
∂xj

I There are several main approaches here
1. Newton’s Method: Attack eq. (6) directly as a root finding problem. This will require

calculating the Hessian D2f (x)

2. Gradient Based: Use information encoded in the gradient Df (x) to either climb down the
hill towards the minimum, or to approximate D2f (x).

3. Gradient Free: Many different approaches.
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Newton’s Method in Several Dimensions
I We can do the same 2nd order approximation as before:

pk(x) = f (xk) + Df (xk)(x − xk) +
1
2 (x − xk)

T D2f (xk)(x − xk) (7)

I If we differentiate this with respect to x , and set it equal to zero, we can obtain:

x? = xk −
(
D2f (xk)

)−1 Df (xk) (8)
In general, x? need not be a minimum if f is not convex

I Newton’s method: set xk+1 = x?(xk) and keep iterating until convergence
I You can prove that this will converge if you start with a good enough guess (close to the

true minimum)
I Problems: Newton’s method takes itself too seriously

I Treats a local 2nd order approximation as though it’s good globally
I With a bad initial guess, tends to take extremely large step sizes, which take you even

farther away from the true optimum, and the whole thing breaks down
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Newton’s Method with Line Searches
I What if instead of taking the approximation pk so seriously, we just used it to get a good

search direction?
I Remember that the FOCs for eq. (7) are D2f (xk)(x? − xk) = −Df (xk)

I Let’s define our search direction sk = (x? − xk) as the solution to this system of linear
equations
I Write our update step as xk+1 = xk + αsk

I When α = 1, this is just regular Newton’s Method

I What if we solve the univariate problem
max
αk≥0

f (xk + αksk)

and set xk+1 = xk + α?
ksk? This is called a Line Search

Use your favorite derivative free method from before (usually you want Brent’s method)

I It tends to be much less sensitive to the initial conditions than regular Newton’s method
I You can plug this line search idea back in to most search algorithms: as long as they give

you a proposed point, you can try searching in that direction instead
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Other Methods (non-exhaustive)
1. Gradient Descent: take successive steps downhill (follow the gradient) until you converge

2. Simplex Based Methods: (Nelder-Mead) uses a local simplicial approximation of the
objective and a set of heuristic rules to “approximate” the gradient and follow it downhill

3. Quasi-Newton Methods: Instead of calculating the Hessian D2f (x) directly, build up an
approximation using information just from the derivative.
I There are many options in this space, but you probably want to be using L-BFGS.

4. Conjugate Gradient: extremely efficient algorithm but it only works if the hessian D2f (x)
is positive definite (i.e., the function is convex)

5. Global Methods:
I Simulated Annealing/Monte Carlo Markov Chains: Take random steps, with a probability of

sometimes stepping downhill (to help escape local minima)
I Differential Evolution: Track many different candidate points, and sometimes “mutate”

coordinates from the best ones to get better potential test points
I And many many more...
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Section 3

A brief aside: Differentiation
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Why do we need gradients?

I We’ve seen already that derivatives show up all over the place.

I Any time we have a maximization problem

max
x∈Rn

f (x)

we know that the solution x? satisfies Df (x?) = 0

I You need to calculate the gradient to use gradient descent, L-BFGS, or any other gradient
based method

I You even need second derivatives D2f (x) (also called the Hessian) if you want to use
Newton’s method or other similar approaches
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How do we calculate derivatives in practice?
There are three main approaches:

1. Write them down in closed form
I Nice if you can, but requires a lot of work
I Hard if you’re rapidly iterating on a model
I Extremely error prone

2. Finite differences
I Evaluate the function multiple times at small perturbations to the point of intersection
I Usually quite robust
I Requires very little work, but is often the slowest approach

3. Automatic Differentiation
I Have the computer differentiate your program for you
I Usually works, and calculates exact derivatives
I Relies on programming language and compiler features – sometimes you’re limited in how

you write your code, especially in python
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Finite Differences
The basic theory of finite differences is pretty simple
I Recall the definition of a derivative for f : R → R:

Df (x) = lim
h→0

f (x + h)− f (x)
h

I Rather than actually taking the limit, we can try to do this with a really small perturbation:

Df (x) ≈ f (x + h)− f (x)
h

where h is small.

Benefits:
I In principle, this is pretty easy to implement (although you shouldn’t – there are lot’s of

issues with numerical stability, so you should use someone else’s package rather than
writing it yourself)

I Conceptually straightforward
I When implemented properly, can be fairly robust
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Finite Differences: Drawbacks
All that being said, you probably want to avoid finite differences for your actual code. Why?
I It adds a source of approximation error

This can be a serious issue for poorly conditioned problems, or problems with very high curvature in f (i.e,
D2f (x) is large)

I It is really slow compared to other options – it requires a lot more evaluations of your
function, which can be quite costly

Consider what we need to do when f : Rn → R where n is nontrivially large:

Dfi(x) ≈
f (x + hiei)− f (x)

hi
∀i = 1, . . . , n

where ei = (0, . . . , 0, 1, 0 . . . , 0) is the ith basis vector for Rn

I This requires two function evaluations of f for every dimension of x
In practice, it actually involves three, since people tend to use two sided finite differences to reduce the
approximation error, or adaptive schemes which require even more function evaluations

I So if n = 10, you have to evaluate f at least 21 times every time you want the derivative
I You can see how this gets very expensive very fast as n gets large
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Autodifferentiation

I In practice you can do much, much better by having the computer write your derivatives
for you

I How does this work in practice?
I Start with the chain rule:

D(f ◦ g)(x) = Df (g(x)) · Dg(x)

I A program is just a sequence of elementary operations chained together (all of which have
known derivatives/gradients)

I In principle, if you write down primitive rules for all of the elementary functions, and apply
the chain rule all the way through, you can get the computer to write the correct answer

I Recursive applications of simple rules (like the chain rule) is something computers are really
good at!

I It’s slightly more complicated than this, but you mostly just need to know that this exists
and can work like magic
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I It’s slightly more complicated than this, but you mostly just need to know that this exists
and can work like magic
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Autodifferentiation: Benefits/Drawbacks
Benefits:
I Extremely easy – you just call a package and it calculates your derivatives for you
I No approximation error (unlike finite differences)
I Much less error prone than writing derivatives by hand
I It works especially well for large complicated functions

Drawbacks:
I You need to have derivatives written for every primitive function that you use. This means

that sometimes you’re constrained in the functions you can write without breaking autodiff
I In some cases, you can achieve better performance writing derivatives by hand
I Bad performance when the function you’re differentiating involves an iterative procedure

I For instance, you should never attempt to autodifferentiate the solution to an optimization
problem

I Instead, you can exploit results (like the Envelope Theorem) to get the derivative to those
problems in closed form, or just use finite differences
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Practical Guide to Differentiation
What packages should I use and when??

Finite Differences
I In Julia, consider either FiniteDiff.jl or FiniteDifferences.jl

I Both have similar functionality, and will probably work for you
I FiniteDifferences.jl can sometimes be better if you want higher order derivatives

I However, you should only be using these
1. To double check derivatives you wrote by hand

2. As a last resort, or

3. If you’re sure you know what you’re doing

Autodifferentiation
I In Julia, use either ForwardDiff.jl or Zygote.jl

I For the kinds of functions we will be dealing with in this course, ForwardDiff.jl is
probably your best bet

I Really robust for smaller generic functions
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Section 4

Constrained Optimization
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Problem Setup
I Let’s consider an optimization problem of the form

max
x∈Rn

f (x)

s.t. g(x) = 0
(9)

for some functions f : Rn → R (objective) and g : Rn → Rm (constraints).
I Extremely general formulation – most interesting problems in economics involve some

form of constrained optimization
I An risk-averse investor chooses a portfolio of assets, subject to a budget constraint
I A social planner chooses a set of labor and consumption allocations to maximize welfare,

subject to incentive compatibility constraints (what is the optimal tax rate?)
I A social planner chooses which medical students get matched to which schools to maximize

total match utility, subject to adding-up constraints (each person is assigned to one and only
one match)

I How do we augment our unconstrained methods in order to enforce the
constraints at our solution?



26/39

Problem Setup
I Let’s consider an optimization problem of the form

max
x∈Rn

f (x)

s.t. g(x) = 0
(9)

for some functions f : Rn → R (objective) and g : Rn → Rm (constraints).
I Extremely general formulation – most interesting problems in economics involve some

form of constrained optimization
I An risk-averse investor chooses a portfolio of assets, subject to a budget constraint
I A social planner chooses a set of labor and consumption allocations to maximize welfare,

subject to incentive compatibility constraints (what is the optimal tax rate?)
I A social planner chooses which medical students get matched to which schools to maximize

total match utility, subject to adding-up constraints (each person is assigned to one and only
one match)

I How do we augment our unconstrained methods in order to enforce the
constraints at our solution?



26/39

Problem Setup
I Let’s consider an optimization problem of the form

max
x∈Rn

f (x)

s.t. g(x) = 0
(9)

for some functions f : Rn → R (objective) and g : Rn → Rm (constraints).
I Extremely general formulation – most interesting problems in economics involve some

form of constrained optimization
I An risk-averse investor chooses a portfolio of assets, subject to a budget constraint
I A social planner chooses a set of labor and consumption allocations to maximize welfare,

subject to incentive compatibility constraints (what is the optimal tax rate?)
I A social planner chooses which medical students get matched to which schools to maximize

total match utility, subject to adding-up constraints (each person is assigned to one and only
one match)

I How do we augment our unconstrained methods in order to enforce the
constraints at our solution?



26/39

Problem Setup
I Let’s consider an optimization problem of the form

max
x∈Rn

f (x)

s.t. g(x) = 0
(9)

for some functions f : Rn → R (objective) and g : Rn → Rm (constraints).
I Extremely general formulation – most interesting problems in economics involve some

form of constrained optimization
I An risk-averse investor chooses a portfolio of assets, subject to a budget constraint
I A social planner chooses a set of labor and consumption allocations to maximize welfare,

subject to incentive compatibility constraints (what is the optimal tax rate?)
I A social planner chooses which medical students get matched to which schools to maximize

total match utility, subject to adding-up constraints (each person is assigned to one and only
one match)

I How do we augment our unconstrained methods in order to enforce the
constraints at our solution?



26/39

Problem Setup
I Let’s consider an optimization problem of the form

max
x∈Rn

f (x)

s.t. g(x) = 0
(9)

for some functions f : Rn → R (objective) and g : Rn → Rm (constraints).
I Extremely general formulation – most interesting problems in economics involve some

form of constrained optimization
I An risk-averse investor chooses a portfolio of assets, subject to a budget constraint
I A social planner chooses a set of labor and consumption allocations to maximize welfare,

subject to incentive compatibility constraints (what is the optimal tax rate?)
I A social planner chooses which medical students get matched to which schools to maximize

total match utility, subject to adding-up constraints (each person is assigned to one and only
one match)

I How do we augment our unconstrained methods in order to enforce the
constraints at our solution?



26/39

Problem Setup
I Let’s consider an optimization problem of the form

max
x∈Rn

f (x)

s.t. g(x) = 0
(9)

for some functions f : Rn → R (objective) and g : Rn → Rm (constraints).
I Extremely general formulation – most interesting problems in economics involve some

form of constrained optimization
I An risk-averse investor chooses a portfolio of assets, subject to a budget constraint
I A social planner chooses a set of labor and consumption allocations to maximize welfare,

subject to incentive compatibility constraints (what is the optimal tax rate?)
I A social planner chooses which medical students get matched to which schools to maximize

total match utility, subject to adding-up constraints (each person is assigned to one and only
one match)

I How do we augment our unconstrained methods in order to enforce the
constraints at our solution?



27/39

Best Approach: Reformulate the Problem

Oftentimes you can simply reformulate the constraint/problem and choose an easier domain to
search over instead
I Simplex Constraints (probabilities sum to 1): suppose g(x) =

∑
xi − 1 and we know

0 ≤ xi ≤ 1
I Use a known bijection from Rn−1 → ∆n

I See UnitSimplex transformation in TransformVariables.jl

I Consumption Savings with Labor Choice:
max
c,n

u(c, n) + V (b′)

s.t.c + b′ ≤ wn
(10)

Choose consumption share of income rather than consumption directly to ensure that
c ≥ 0 always

https://en.wikipedia.org/wiki/Logit-normal_distribution#Multivariate_generalization
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Best Approach: Reformulate the Problem (cont.)

I Linear Equality Constraints: Suppose g(x) = Ax − b where A is an m × n matrix
I Let M be any matrix whose columns span the nullspace of A (i.e, AM = 0, where M is

n × p) and let x̂ be any solution to Ax = b
I Search over z ∈ Rp , and solve the reformulated problem

max
z∈Rp

f (Mz + x̂)

Notice that by construction, A(Mz + x̂) = Ax̂ = b, so this lets us search in an unconstrained
way while ensuring that the constraint always holds

I In general, this approach will always be better than trying to handle your constraints with
your solution algorithm
I It’s much much easier to solve unconstrained problems (or problems with simple

box-bounds) than problems with nonlinear constraints
I If you can exploit the structure of your problem, that’s always better
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Lagrangian Approach
I The strategy you’ve probably seen before is to set up a Lagrangian:

L(x , λ) := f (x)− λ · g(x)
where λ ∈ Rm.

I We know that a solution (x?, λ?) to eq. (9) satisfies DL(x?, λ?) = 0
I This suggests the approach: Define h : Rn × Rm → R as h(x , λ) := DL(x , λ).

I We want to find (x?, λ?) such that h(x?, λ?) = 0
I This is a root-finding problem, so we can just attack that directly, with your favorite

approach (say, Newton’s method)

I You can extend this to inequality constraints by adding the additional equality constraints:
λigi(x) = 0 ∀ i ∈ 1, . . . ,m

I Solving this system with Newton’s Method is called Sequential Quadratic Programming

This can be an extremely effective strategy, as long as the problem is not too large, since it requires you to
solve a system of equations involving the dense hessian D2f (x) (which is O(n3))
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Penalty Methods

I Intuition here is simple: make it painful for the optimizer to violate the constraints

I Consider the following unconstrained problem:

max
x∈Rn

f (x)− P
m∑

i=1
gi(x)2 (11)

for some penalty parameter P
Note: if you’re solving a minimization problem, add the penalty term rather than subtract it

I As P → ∞, the solution to this problem converges to the true solution
I For inequality constraints g(x) ≤ 0, replace g(x) with g+(x) where g+

i (x) = max{gi(x), 0}

I Problem: when P is very large, this problem is badly conditioned

I This makes our solution algorithms converge very slowly, and can introduce numerical
instabilities to our problem
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Penalty Methods: Solution
Instead of starting with a very large P , instead solve a sequence of problems where P gets
larger and larger
I Choose a sequence Pk which starts small and diverges to ∞:

I Let Pk = γPk−1 for some γ > 1, with P0 = 1
I Common choice is to use γ = 10 but you may need to vary it by problem

I Let xk be the solution to

max
x∈Rn

f (x)− Pk

m∑
i=1

gi(x)2 (12)

I The trick: use xk as the initial guess for the k + 1th problem
I This helps with convergence speed, but does not fix the numerical instabilities caused by

the poor conditioning of the problem
I You still have to solve the problem when Pk has grown very, very large
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Augmented Lagrangian Method
I Similar to the penalty method approach, but we use the Lagrangian of the problem, rather

than just the penalty functions, to enforce the constraint
I Consider the sequence of problems for k = 0, . . . ,∞:

max
x∈Rn

f (x)︸︷︷︸
Main Objective

−Pk
2

m∑
i=1

gi(x)2

︸ ︷︷ ︸
Penalty Function

−
m∑

i=1
λk

i gi(x)︸ ︷︷ ︸
Lagrange Multiplier Penalty

(13)

where Pk → ∞ is a sequence of increasing penalties Note: if you’re solving a minimization
problem, add the penalty term rather than subtract it

I We can’t pick λi as part of the optimization: the true optimum is a saddle point of the
Lagrangian, not a minimum

I Use the following update rule for λi :
λk+1

i = λk
i + Pkgi(xk) (14)

At every iteration, we’re updating λi with exactly the “contribution” of the penalty
function in the previous iteration

I You don’t need to keep going until Pk is really large – you can stop if λ has converged!
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Section 5

Special Cases
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Convexity is your friend

Recall some definitions:
I A function f : Rn → R is convex if for any λ ∈ (0, 1), and any points x , y ∈ Rn

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y)

I A set A ⊂ Rn is convex if for every x , y ∈ A, and every λ ∈ (0, 1),
λx + (1 − λ)y ∈ A

Why is convexity important for optimization?

1. It has sharp implications about where the extrema can be

2. There are usually a set of specialized methods you can use once you know that your
problem is convex (which tend to perform much better)
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Convex Functions have Unique Global Minima
Theorem 1
Let f : Rn → R be a strictly convex function. Then every local minima of f is a global
minimum.

Proof. Suppose not. I.e, there is x? 6= xm with f (x?) < f (xm)

I Let xm be a local minimum of f (there exists a neighborhood U such that if y ∈ U, then
f (y) ≥ f (xm))

I Pick λ sufficiently small that x ′ = λxm + (1 − λ)x? ∈ U, and so f (x ′) ≥ f (xm)

I But we also know that
f (x ′) < λf (xm) + (1 − λ)f (x?) By strict convexity of f

< λf (xm) + (1 − λ)f (xm) Since x? is a global minimum
= f (xm)

This is a contradiction, so no such x? can exist.
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Convex Problems have Unique Minima
Theorem 2
Let f : Rn → R be a strictly convex, continuous function, and let D ⊂ Rn be a compact,
convex set. Then, the constrained optimization problem

min
x

f (x)

s.t. x ∈ D
has a unique minimum.

Proof. We know a minimum exists because continuous functions on compact sets always have
a minimum.

Suppose we have two: x1 and x2 with f (x1) = f (x2) ≤ f (x) for all x ∈ D

Then consider x ′ = x1+x2
2 . We know x ′ ∈ D because D is convex.

But then strict convexity implies

f (x ′) <
1
2 f (x1) +

1
2 f (x2) = f (x1)

which contradicts that f (x1) was a minimum to begin with.
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So what does convexity buy us?
I Peace of Mind

I Theorem 1 means that with a convex objective, if we find a local minimum (which satisfies
our constraints) then we’re done. We can never do better

I Theorem 2 tells us that we’ll never wind up with an indeterminate solution – there’s always a
unique minimum

I This means that if our objective is convex, we can check the interior for a single unique
global minimum, and then just check points on the boundary of D if we can’t find one

I Speed
I For general, nonlinear convex problems, consider looking into the Conjugate Gradient method
I Many other convex problems have special structures that specific solvers can exploit.
I Taking advantage of it often gets you huge speed gains, or takes an infeasible problem and

makes it feasible

I Note: All of this goes through, exactly the same, if you replace min with max and convex
function with concave function.
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Special Case: Linear Programs
Consider a problem of the form

min
x∈Rn

cT x

s.t. Ax ≤ b
x ≥ 0

(15)

where c ∈ Rn, b ∈ Rm, and A is an m × n matrix.
I This is known as a Linear Program (LP)
I It has a linear objective function and affine (linear plus a constant) constraint set
I Whenever you’re working on a problem, you should always be on the lookout for the

possibility that you can reformulate it as an LP

There are extremely efficient numerical algorithms to solve these problems

I Simplex Method: Intuition
I The constraint set of this problem looks like a polytope (in 2-d, polygon)
I One can show that a minimum to the problem will always lie on one of the corners, so its

sufficient to just check all the corners in a smart way
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min
x∈Rn

cT x

s.t. Ax ≤ b
x ≥ 0

(15)

where c ∈ Rn, b ∈ Rm, and A is an m × n matrix.
I This is known as a Linear Program (LP)
I It has a linear objective function and affine (linear plus a constant) constraint set
I Whenever you’re working on a problem, you should always be on the lookout for the

possibility that you can reformulate it as an LP

There are extremely efficient numerical algorithms to solve these problems

I Simplex Method: Intuition
I The constraint set of this problem looks like a polytope (in 2-d, polygon)
I One can show that a minimum to the problem will always lie on one of the corners, so its

sufficient to just check all the corners in a smart way
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Operationalizing It All: What packages do I use in Julia?
I Univariate Optimization: use Optim.jl – defaults to Brent’s method
I Multivariate Optimization:

I Nelder-Mead, Newton, Conjugate Gradient, and L-BFGS: use Optim.jl

This is usually the fastest and easiest way to get off the ground, since Optim will automatically
compute the derivaties you need with ForwardDiff.jl

I If you need nonlinear constraints, use NLopt.jl

I Gradient Based: MMA (Method of Moving Asymptotes) is extremely robust, but also has
SLSQP and L-BFGS

I COBYLA and BOBYQA are good for derivative free (and BOBYQA works particularly well
when your objective function looks quadratic)

I Allows you to embed any method inside an Augmented Lagrangian problem, which lets you do
L-BFGS with nonlinear constraints, for instance

I Linear Programming: Use JuMP.jl

In principle, if you like using JuMP.jl, you can use it to set up and solve any of these problems. However
it’s particularly useful for LPs and other special convex problems
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