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Where we’ve been

I So far, we’ve learned how to write economic models recursively.

I Our prototypical example was the Neoclassical Growth Model:
v(k) =max

c,k′
u(c) + βv(k ′)

s.t. c + k ′ ≤ F (k) + (1− δ)k

I Once they’re written recursively, we’ve learned how to solve them (find a function that
satisfies the recursive relationship)

I Once they’re solved, we learned how to simulate them, and use the simulated data to
estimate parameters

I With representative agents, an equilibrium in these models is not very complicated
I If firms rent capital from household, we get r = F ′(k), etc...
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Where we’re going

I Computing with General Equilibrium

I Many interesting models do not feature a representative household

I When there are many heterogeneous agents in our models, there are several special concerns

I Mostly about how we compute the market clearing prices

I How do we approach these models computationally?

I Policy Analysis

I The models we’ve worked on so far have all been efficient (Limited role for policy)

I It’s hard to even think about redistribution in a model with just a representative household

I In many models, the government can step in to correct market failures, but we need to
know: what is the optimal policy?



3/18

Where we’re going

I Computing with General Equilibrium

I Many interesting models do not feature a representative household

I When there are many heterogeneous agents in our models, there are several special concerns

I Mostly about how we compute the market clearing prices

I How do we approach these models computationally?

I Policy Analysis

I The models we’ve worked on so far have all been efficient (Limited role for policy)

I It’s hard to even think about redistribution in a model with just a representative household

I In many models, the government can step in to correct market failures, but we need to
know: what is the optimal policy?



3/18

Where we’re going

I Computing with General Equilibrium

I Many interesting models do not feature a representative household

I When there are many heterogeneous agents in our models, there are several special concerns

I Mostly about how we compute the market clearing prices

I How do we approach these models computationally?

I Policy Analysis

I The models we’ve worked on so far have all been efficient (Limited role for policy)

I It’s hard to even think about redistribution in a model with just a representative household

I In many models, the government can step in to correct market failures, but we need to
know: what is the optimal policy?



3/18

Where we’re going

I Computing with General Equilibrium

I Many interesting models do not feature a representative household

I When there are many heterogeneous agents in our models, there are several special concerns

I Mostly about how we compute the market clearing prices

I How do we approach these models computationally?

I Policy Analysis

I The models we’ve worked on so far have all been efficient (Limited role for policy)

I It’s hard to even think about redistribution in a model with just a representative household

I In many models, the government can step in to correct market failures, but we need to
know: what is the optimal policy?



4/18

Section 1

Heterogeneous Agent Models: Aiyagari (1994, QJE)
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Aiyagari (1994, QJE): Prototypical Heterogeneous Agent Model

v(a, y) = max
c,a′≥0

u(c) + βE [v(a′, y ′)|y ]

s.t. c + a′ ≤ (1 + r)a + y
log(y ′) = ρ log(y) + ε

ε ∼ N(0, σ)

(1)

I Consider the problem of a large group of households who must save for the future
I They are heterogeneous in their current income y , and in their level of assets a.

I Log income follows an AR(1) process
I Labor supplied inelastically (no choice of how much to work)

I Derive flow utility u(c) from consumption, and discount the future at rate β

I Can save for the future at a rate 1 + r , but cannot borrow.
I Markets are incomplete (There are certain risks that they cannot insure against)

I So far, this should look very familiar from your problem set...
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Extending Bewley to Aiyagari

I If we take r as given, and just consider the households’ consumption savings problem, then
we know how to solve
I We saw that it’s not much more complicated than the neoclassical growth model with

stochastic productivity
I But r is a price: we want it to be set, in equilibrium, to clear the market for assets

I Supply Side: Suppose we have a representative firm, with production function F (k), who
rents capital from the households at a price r .

max
k

F (k)− rk =⇒ F ′(k) = r =⇒ k = K(r) (2)

For some function K(r). If F(k) = kα, then K(r) =
(
α
r
) 1

1−α

I Distribution of agents: let Λ(a, y) be the cumulative distribution function of assets and
income in the economy (with pdf λ)
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Equilibrium
I A recursive stationary equilibrium in this model is a set of

1. Consumption and savings policy functions gc(a, y) and ga(a, y),

2. An interest rate r , and

3. A distribution Λ(a, y) over assets and income levels

I Such that:
1. Optimality: gc and ga solve the household’s consumption/savings problem, given r

2. Market Clearing: The interest rate r clears the market for capital

K(r) =
∫

a dΛ(a, y) =
∫ ∫

a λ(a, y) da dy (3)

3. Stationarity: Given the policy functions gc and ga, and the interest rate r , the distribution
Λ is unchanging over time

I We know what optimality means – need to solve the household’s dynamic program as we
have been doing

I Need to spend a little bit of time thinking through market clearing and stationarity
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Stationarity
I A stationary distribution is one that is not changing over time

I If we step the distribution forward one time period, using our policy rules, we should get
the same distribution back out again

I Let π(y ′|y) denote the conditional pdf of income tomorrow given that income today is y .

I Then we can write the law of motion for Λ as

Λ(a, y) =
∫ ∞

−∞

∫ y

−∞

∫ ∞

0

1 {ga(a0, y0) ≤ a′} π(y ′|y0) λ(a0, y0) da0 dy ′ dy0

I This is just fancy math for: if I step my simulated distribution of agents forward one
period, the overall distribution should not change

I Each agent is moving around through the distribution, but on average it stays the same

I In this class, we will never compute those integrals directly – we will always be
approximating the distribution using a simulated set with a discrete number of agents
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Stationarity
I In general, your distributions will usually

converge to a single, stationary distribution
As long as it’s possible to move from every point
in the state space to every other point in the state
space (full mixing)

I We say that the distribution has converged
if the histogram of assets and income has
stopped changing

I The thing we actually want is to calculate
the total assets in the economy:

A(Λ) =
∫ ∫

aλ(a, y) da dy

I Take the average of the assets of our
agents in our simulated distribution:

A(Λ) ≈ 1

N

N∑
i=1

ai
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Market Clearing
I Remember that our stationary distribution

is calculated using policy functions gc and
ga that take r as given.

I That means we can really write Λ(r): the
stationary distribution of assets depends
on the interest rate

I Our simulation results also depend on r :
average assets are A(Λ(r))

I Supply and Demand:
I A(Λ(r)) is our upward sloping supply

curve of assets
I K(r) is our downward sloping demand

curve for capital
I The market clearing price is the r that

sets
K(r) = A(Λ(r))
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Market Clearing: Root finding approach

I Recast problem as root finding on excess
demand:

ED(r) = K(r)− A(Λ(r)) (4)
I With a sensible root finding procedure,

you will typically converge within 10
iterations for a 1D problem

I If you have multiple markets to clear, then
it’s a multivariate root finding problem –
harder to do

I Be careful of tolerances in your root
finding procedure Simulations are noisy, and so
you may not be able to solve your root finding
problem accurately beyond a tolerance of 10−3

without a prohibitively large computational cost There are more clever approaches to simulating the
distribution of assets, but they tend to be less intuitive
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Aiyagari: Wrapping Up
I In general, our computational tools allow us to analyze these types of heterogenous agent

problems

I When we do, we will have to think more carefully about how to deal with market clearing
and other equilibrium conditions

I Very few limits (other than computational cost) on which dynamic models we can solve

I Especially when you move into the world of models with many agents, and nontrivial
dispersion in wealth/human capital/income/etc..., these models are not amenable to
being solved on pen and paper

I For many problems, VFI is the slowest, but most robust solution
I There are other approaches, but they all tend to be more situational (although they often

obtain large speed gains)
I There are approaches (like policy function iteration, and others) that can speed up VFI

I Oftentimes, without a smarter approach, the majority of your time will be spent in the
simulation code, rather than solving the model
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Section 2

Policy Experiments
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Why do we need a model for policy evaluation?
Predictive accuracy

There are many cases where the reduced-form elasticities you get from running a regression
(even a well-identified regression) are not good predictors of how people will behave if you
make changes to policy

I People who are forward-looking are much more responsive to permanent changes than
temporary changes

You have to be careful about which elasticities you’re actually measuring

I People can respond to changes in policy in unexpected ways

E.g. Changes in inflation expectations in the 1970s

I Predictions that are not grounded in a model of people’s underlying choices are vulnerable
to the Lucas Critique: behavior rules estimated in the data are not invariant to policy

I Making sense of the data available: Indirect Inference

I Often, economic models have good predictions, even out of sample.

E.g., McFadden 1974 (SF Transit demand prediction)
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Why do we need a model for policy evaluation?
Counterfactuals and Welfare Analysis

I Counterfactuals are at the heart of the questions we want to answer:

I How will people’s behavior in response to a policy that has never been implemented?

I How would they have behaved if we hadn’t implemented some policy?

I In nontrivial models, we need a model in order to evaluate the welfare impacts of a change
in policy

I Will people be better off on average after a tax reform?

I By how much?

I Will this reform increase or decrease inequality?

I How are the gains distributed?

I Without a model, you cannot hope to answer these kinds of questions
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Tax Reform in Aiyagari

I In Aiyagari models, generally people tend to over-save relative to what the social planner
would choose

I Fear of a sequence of very many negative shocks

I If you hit your borrowing constraint, you may wind up with very low consumption

I Strong precautionary motive for savings, at the individual level, to self-insure against income
risk

I Suppose that the government imposes a tax on capital income τ , and redistributes the
money with a lump sum tax T (let’s say, τ = 30%)

I How can we model the effects of this tax reform?
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Tax Reform in Aiyagari: Updated Model

v(a, y) = max
c,a′≥0

u(c) + βE [v(a′, y ′)|y ]

s.t. c + a′ ≤
[
1 + r(1− τ)

]
a + y + T

log(y ′) = ρ log(y) + ε

ε ∼ N(0, σ)

(5)

I Only change to the Bellman equations are in the budget constraint: consumers take τ and
T as given

I New considerations:
I Taxes distort savings behavior =⇒ different r in equilibrium
I Government needs to balance its budget =⇒ find T such that∫ ∫

τ ra λ(a, y) da dy = T

I Both of these will change consumer behavior – we have to solve for all of them jointly
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Tax Reform in Aiyagari: Solution Algorithm
Fix τ = 30%. Treat these market clearing conditions as nested problems:
I Define D(r ,T ) to be the government’s budget deficit
I Define ED(r ,T ) to be the excess demand for capital
I Algorithm:

1. For any given r , solve for the T that balances the government’s budget (solving and
simulating the model). That is, solve the root finding problem

D(r ,T ) = 0

as a function of T , holding r fixed. Call the results T ?(r)

2. Solve the root finding problem for

ED(r ,T ?(r)) = 0

Call the result r?

I Our final (r ,T ) are (r?,T ?(r?)).

We’ll go over code for how to do this in tutorial
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