Lecture 10: Heterogeneous Agents

Jacob Adenbaum

University of Edinburgh

Spring 2024

Where we've been

▶ So far, we've learned how to write economic models **recursively**.

Our prototypical example was the Neoclassical Growth Model:

$$
v(k) = \max_{c,k'} \quad u(c) + \beta v(k')
$$

s.t.
$$
c + k' \le F(k) + (1 - \delta)k
$$

- I Once they're written recursively, we've learned how to solve them (find a function that satisfies the recursive relationship)
- I Once they're solved, we learned how to **simulate** them, and use the simulated data to **estimate** parameters

 \triangleright With representative agents, an equilibrium in these models is not very complicated

If firms rent capital from household, we get $r = F'(k)$, etc...

Where we've been

▶ So far, we've learned how to write economic models **recursively**.

Our prototypical example was the Neoclassical Growth Model:

$$
v(k) = \max_{c,k'} \quad u(c) + \beta v(k')
$$

s.t.
$$
c + k' \le F(k) + (1 - \delta)k
$$

- **In** Once they're written recursively, we've learned how to solve them (find a function that satisfies the recursive relationship)
- I Once they're solved, we learned how to simulate them, and use the simulated data to **estimate** parameters

 \triangleright With representative agents, an equilibrium in these models is not very complicated

If firms rent capital from household, we get $r = F'(k)$, etc...

Where we've been

▶ So far, we've learned how to write economic models recursively.

Our prototypical example was the Neoclassical Growth Model:

$$
v(k) = \max_{c,k'} \quad u(c) + \beta v(k')
$$

s.t.
$$
c + k' \le F(k) + (1 - \delta)k
$$

- I Once they're written recursively, we've learned how to solve them (find a function that satisfies the recursive relationship)
- I Once they're solved, we learned how to simulate them, and use the simulated data to **estimate** parameters

 \triangleright With representative agents, an equilibrium in these models is not very complicated

If firms rent capital from household, we get $r = F'(k)$, etc...

- Computing with General Equilibrium
	- ▶ Many interesting models do not feature a representative household
	- \triangleright When there are many heterogeneous agents in our models, there are several special concerns
	- **I** Mostly about how we compute the **market clearing prices**
	- \blacktriangleright How do we approach these models computationally?

Policy Analysis

-
-
-

- Computing with General Equilibrium
	- ▶ Many interesting models do not feature a representative household
	- \triangleright When there are many heterogeneous agents in our models, there are several special concerns
	- **If** Mostly about how we compute the market clearing prices
	- \blacktriangleright How do we approach these models computationally?

Policy Analysis

-
-
-

- Computing with General Equilibrium
	- ▶ Many interesting models do not feature a representative household
	- \triangleright When there are many heterogeneous agents in our models, there are several special concerns
	- **If** Mostly about how we compute the market clearing prices
	- \blacktriangleright How do we approach these models computationally?
- Policy Analysis
	- In The models we've worked on so far have all been efficient (Limited role for policy)
	- It's hard to even think about redistribution in a model with just a representative household
	- \blacktriangleright In many models, the government can step in to correct market failures, but we need to know: what is the **optimal policy**?

- Computing with General Equilibrium
	- ▶ Many interesting models do not feature a representative household
	- \triangleright When there are many heterogeneous agents in our models, there are several special concerns
	- **If** Mostly about how we compute the market clearing prices
	- \blacktriangleright How do we approach these models computationally?
- Policy Analysis
	- In The models we've worked on so far have all been efficient (Limited role for policy)
	- It's hard to even think about redistribution in a model with just a representative household
	- In many models, the government can step in to correct market failures, but we need to know: what is the **optimal policy**?

Section 1

[Heterogeneous Agent Models: Aiyagari \(1994, QJE\)](#page-8-0)

Aiyagari (1994, QJE): Prototypical Heterogeneous Agent Model

$$
v(a, y) = \max_{c, a' \ge 0} u(c) + \beta \mathbb{E} [v(a', y')|y]
$$

s.t.
$$
c + a' \le (1 + r)a + y
$$

$$
\log(y') = \rho \log(y) + \epsilon
$$

$$
\epsilon \sim N(0, \sigma)
$$
 (1)

- \triangleright Consider the problem of a large group of households who must save for the future
- \blacktriangleright They are heterogeneous in their current income y, and in their level of assets a.
	- \blacktriangleright Log income follows an AR(1) process
	- \blacktriangleright Labor supplied inelastically (no choice of how much to work)
- Derive flow utility $u(c)$ from consumption, and discount the future at rate β
- ightharpoonup Can save for the future at a rate $1 + r$, but cannot borrow.
	- Markets are incomplete (There are certain risks that they cannot insure against)
- \triangleright So far, this should look very familiar from your problem set...

Aiyagari (1994, QJE): Prototypical Heterogeneous Agent Model

$$
v(a, y) = \max_{c, a' \ge 0} u(c) + \beta \mathbb{E} [v(a', y')|y]
$$

s.t.
$$
c + a' \le (1 + r)a + y
$$

$$
\log(y') = \rho \log(y) + \epsilon
$$

$$
\epsilon \sim N(0, \sigma)
$$
 (1)

- \triangleright Consider the problem of a large group of households who must save for the future
- \blacktriangleright They are heterogeneous in their current income y, and in their level of assets a.
	- \blacktriangleright Log income follows an AR(1) process
	- \blacktriangleright Labor supplied inelastically (no choice of how much to work)
- **I** Derive flow utility $u(c)$ from consumption, and discount the future at rate β
- \blacktriangleright Can save for the future at a rate $1 + r$, but cannot borrow.
	- **Markets are incomplete** (There are certain risks that they cannot insure against)
- \triangleright So far, this should look very familiar from your problem set...

Aiyagari (1994, QJE): Prototypical Heterogeneous Agent Model

$$
v(a, y) = \max_{c, a' \ge 0} u(c) + \beta \mathbb{E} [v(a', y')|y]
$$

s.t.
$$
c + a' \le (1 + r)a + y
$$

$$
\log(y') = \rho \log(y) + \epsilon
$$

$$
\epsilon \sim N(0, \sigma)
$$

$$
(1)
$$

- \triangleright Consider the problem of a large group of households who must save for the future
- \blacktriangleright They are heterogeneous in their current income y, and in their level of assets a.
	- \blacktriangleright Log income follows an AR(1) process
	- \blacktriangleright Labor supplied inelastically (no choice of how much to work)
- **I** Derive flow utility $u(c)$ from consumption, and discount the future at rate β
- \blacktriangleright Can save for the future at a rate $1 + r$, but cannot borrow.
	- **Markets are incomplete** (There are certain risks that they cannot insure against)
- \triangleright So far, this should look very familiar from your problem set...

Extending Bewley to Aiyagari

- If we take r as given, and just consider the households' consumption savings problem, then we know how to solve
	- \triangleright We saw that it's not much more complicated than the neoclassical growth model with stochastic productivity

In But r is a price: we want it to be set, in equilibrium, to clear the market for assets

In Supply Side: Suppose we have a representative firm, with production function $F(k)$ **, who** rents capital from the households at a price r.

$$
\max_{k} F(k) - rk \implies F'(k) = r \implies k = K(r) \tag{2}
$$

I Distribution of agents: let $\Lambda(a, y)$ be the cumulative distribution function of assets and income in the economy (with pdf λ)

Extending Bewley to Aiyagari

- If we take r as given, and just consider the households' consumption savings problem, then we know how to solve
	- \triangleright We saw that it's not much more complicated than the neoclassical growth model with stochastic productivity
	- In But r is a price: we want it to be set, in equilibrium, to clear the market for assets
- **In Supply Side: Suppose we have a representative firm, with production function** $F(k)$ **, who** rents capital from the households at a price r .

$$
\max_{k} F(k) - rk \implies F'(k) = r \implies k = K(r) \tag{2}
$$

For some function $K(r)$. If $F(k) = k^{\alpha}$, then $K(r) = \left(\frac{\alpha}{r}\right)^{\frac{1}{1-\alpha}}$

Distribution of agents: let $\Lambda(a, y)$ be the cumulative distribution function of assets and income in the economy (with pdf λ)

A **recursive stationary equilibrium** in this model is a set of

- 1. Consumption and savings policy functions $g_c(a, y)$ and $g_a(a, y)$,
- 2. An interest rate r , and
- 3. A distribution $\Lambda(a, y)$ over assets and income levels

-
-

$$
K(r) = \int a \ d\Lambda(a, y) = \int \int a \ \lambda(a, y) \ da \ dy \tag{3}
$$

-
- \triangleright We know what optimality means need to solve the household's dynamic program as we have been doing
- Need to spend a little bit of time thinking through market clearing and stationarity

A **recursive stationary equilibrium** in this model is a set of

- 1. Consumption and savings policy functions $g_c(a, y)$ and $g_a(a, y)$,
- 2. An interest rate r , and
- 3. A distribution $\Lambda(a, y)$ over assets and income levels

- 1. **Optimality:** g_c and g_a solve the household's consumption/savings problem, given r
- 2. **Market Clearing:** The interest rate r clears the market for capital

$$
K(r) = \int a d\Lambda(a, y) = \int \int a \lambda(a, y) da dy
$$
 (3)

- 3. **Stationarity:** Given the policy functions g_c and g_a , and the interest rate r, the distribution Λ is unchanging over time
- \triangleright We know what optimality means need to solve the household's dynamic program as we have been doing
- \triangleright Need to spend a little bit of time thinking through market clearing and stationarity

A **recursive stationary equilibrium** in this model is a set of

- 1. Consumption and savings policy functions $g_c(a, y)$ and $g_a(a, y)$,
- 2. An interest rate r , and
- 3. A distribution $\Lambda(a, y)$ over assets and income levels

- 1. **Optimality:** g_c and g_a solve the household's consumption/savings problem, given r
- 2. **Market Clearing:** The interest rate r clears the market for capital

$$
K(r) = \int a d\Lambda(a, y) = \int \int a \lambda(a, y) da dy
$$
 (3)

- 3. **Stationarity:** Given the policy functions g_c and g_a , and the interest rate r, the distribution Λ is unchanging over time
- \triangleright We know what optimality means need to solve the household's dynamic program as we have been doing
- \triangleright Need to spend a little bit of time thinking through market clearing and stationarity

A **recursive stationary equilibrium** in this model is a set of

- 1. Consumption and savings policy functions $g_c(a, y)$ and $g_a(a, y)$,
- 2. An interest rate r , and
- 3. A distribution $\Lambda(a, y)$ over assets and income levels

- 1. **Optimality:** g_c and g_a solve the household's consumption/savings problem, given r
- 2. **Market Clearing:** The interest rate r clears the market for capital

$$
K(r) = \int a d\Lambda(a, y) = \int \int a \lambda(a, y) da dy
$$
 (3)

- 3. **Stationarity:** Given the policy functions g_c and g_a , and the interest rate r, the distribution Λ is unchanging over time
- \triangleright We know what optimality means need to solve the household's dynamic program as we have been doing
- \triangleright Need to spend a little bit of time thinking through market clearing and stationarity

A **recursive stationary equilibrium** in this model is a set of

- 1. Consumption and savings policy functions $g_c(a, y)$ and $g_a(a, y)$,
- 2. An interest rate r , and
- 3. A distribution $\Lambda(a, y)$ over assets and income levels

- 1. **Optimality:** g_c and g_a solve the household's consumption/savings problem, given r
- 2. **Market Clearing:** The interest rate r clears the market for capital

$$
K(r) = \int a d\Lambda(a, y) = \int \int a \lambda(a, y) da dy
$$
 (3)

- 3. **Stationarity:** Given the policy functions g_c and g_a , and the interest rate r, the distribution Λ is unchanging over time
- \triangleright We know what optimality means need to solve the household's dynamic program as we have been doing
- \triangleright Need to spend a little bit of time thinking through market clearing and stationarity

\triangleright A stationary distribution is one that is not changing over time

- If we step the distribution forward one time period, using our policy rules, we should get the same distribution back out again
- Exect $\pi(y'|y)$ denote the conditional pdf of income tomorrow given that income today is y.
- I Then we can write the **law of motion** for Λ as

$$
\Lambda(a, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} \int_{0}^{\infty} \mathbb{1} \{g_a(a_0, y_0) \le a'\} \pi(y'|y_0) \lambda(a_0, y_0) \, da_0 \, dy' \, dy_0
$$

- \triangleright This is just fancy math for: if I step my simulated distribution of agents forward one period, the overall distribution should not change
- \triangleright Each agent is moving around through the distribution, but on average it stays the same
- In this class, we will never compute those integrals directly we will always be approximating the distribution using a simulated set with a discrete number of agents

- \triangleright A stationary distribution is one that is not changing over time
- If we step the distribution forward one time period, using our policy rules, we should get the same distribution back out again
- Exect $\pi(y'|y)$ denote the conditional pdf of income tomorrow given that income today is y.

I Then we can write the **law of motion** for Λ as

$$
\Lambda(a,y)=\int_{-\infty}^{\infty}\int_{-\infty}^{y}\int_{0}^{\infty}\mathbb{1}\left\{g_a(a_0,y_0)\leq a'\right\}\,\,\pi(y'|y_0)\;\lambda(a_0,y_0)\;da_0\;dy'\;d_{y_0}
$$

- \triangleright This is just fancy math for: if I step my simulated distribution of agents forward one period, the overall distribution should not change
- \triangleright Each agent is moving around through the distribution, but on average it stays the same
- In this class, we will never compute those integrals directly we will always be approximating the distribution using a simulated set with a discrete number of agents

- \triangleright A stationary distribution is one that is not changing over time
- If we step the distribution forward one time period, using our policy rules, we should get the same distribution back out again
- Let $\pi(y'|y)$ denote the conditional pdf of income tomorrow given that income today is y.
- I Then we can write the **law of motion** for Λ as $\Lambda(a, y) = \int_{-\infty}^{\infty}$ −∞ \int^y −∞ \int^{∞} $\int_{0}^{1} 1\left\{g_{a}(a_{0}, y_{0}) \leq a'\right\} \pi(y'|y_{0}) \lambda(a_{0}, y_{0}) \ da_{0} \ dy' \ d_{y_{0}}$
- \triangleright This is just fancy math for: if I step my simulated distribution of agents forward one period, the overall distribution should not change
- \triangleright Each agent is moving around through the distribution, but on average it stays the same
- In this class, we will never compute those integrals directly we will always be approximating the distribution using a simulated set with a discrete number of agents

- \triangleright A stationary distribution is one that is not changing over time
- If we step the distribution forward one time period, using our policy rules, we should get the same distribution back out again
- Let $\pi(y'|y)$ denote the conditional pdf of income tomorrow given that income today is y.
- I Then we can write the **law of motion** for Λ as

$$
\Lambda(a,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} \int_{0}^{\infty} 1\!\!1\, \{g_a(a_0,y_0) \leq a'\} \; \pi(y'|y_0) \; \lambda(a_0,y_0) \; da_0 \; dy' \; d_{y_0}
$$

- \triangleright This is just fancy math for: if I step my simulated distribution of agents forward one period, the overall distribution should not change
- \triangleright Each agent is moving around through the distribution, but on average it stays the same
- In this class, we will never compute those integrals directly we will always be approximating the distribution using a simulated set with a discrete number of agents

- \triangleright A stationary distribution is one that is not changing over time
- If we step the distribution forward one time period, using our policy rules, we should get the same distribution back out again
- Let $\pi(y'|y)$ denote the conditional pdf of income tomorrow given that income today is y.
- I Then we can write the **law of motion** for Λ as

$$
\Lambda(a,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} \int_{0}^{\infty} 1 \! \! 1 \left\{ g_{a}(a_{0},y_{0}) \leq a' \right\} \; \pi(y'|y_{0}) \; \lambda(a_{0},y_{0}) \; da_{0} \; dy' \; d_{y_{0}}
$$

- \triangleright This is just fancy math for: if I step my simulated distribution of agents forward one period, the overall distribution should not change
- \triangleright Each agent is moving around through the distribution, but on average it stays the same
- In this class, we will never compute those integrals directly we will always be approximating the distribution using a simulated set with a discrete number of agents

- \blacktriangleright In general, your distributions will usually converge to a single, stationary distribution As long as it's possible to move from every point in the state space to every other point in the state space (full mixing)
- \triangleright We say that the distribution has converged if the histogram of assets and income has stopped changing
- \blacktriangleright The thing we actually want is to calculate the total assets in the economy:

$$
A(\Lambda)=\int\int a\lambda(a,y)\;da\;dy
$$

 \blacktriangleright Take the average of the assets of our agents in our simulated distribution:

$$
A(\Lambda) \approx \frac{1}{N} \sum_{i=1}^{N} a_i
$$

Stationary Distribution

Market Clearing

- \blacktriangleright Remember that our stationary distribution is calculated using policy functions g_c and \mathcal{g}_{a} that take r as given.
- That means we can really write $\Lambda(r)$: the stationary distribution of assets depends on the interest rate
- \triangleright Our simulation results also depend on r : average assets are $A(\Lambda(r))$
- \blacktriangleright Supply and Demand:
	- \blacktriangleright A($\Lambda(r)$) is our upward sloping supply curve of assets
	- \blacktriangleright $K(r)$ is our downward sloping demand curve for capital
	- \blacktriangleright The market clearing price is the r that sets

 $K(r) = A(\Lambda(r))$

Asset Market Clearing

Market Clearing: Root finding approach

 \triangleright Recast problem as root finding on excess demand:

 $ED(r) = K(r) - A(\Lambda(r))$ (4)

- \triangleright With a sensible root finding procedure, you will typically converge within 10 iterations for a 1D problem
- \blacktriangleright If you have multiple markets to clear, then it's a multivariate root finding problem – harder to do
- \triangleright Be careful of tolerances in your root finding procedure Simulations are noisy, and so you may not be able to solve your root finding problem accurately beyond a tolerance of 10^{-3} without a prohibitively large computational cost

There are more clever approaches to simulating the

distribution of assets, but they tend to be less intuitive

Asset Market Clearing

Aiyagari: Wrapping Up

- In general, our computational tools allow us to analyze these types of heterogenous agent problems
- \triangleright When we do, we will have to think more carefully about how to deal with market clearing and other equilibrium conditions
- \triangleright Very few limits (other than computational cost) on which dynamic models we can solve
- \triangleright Especially when you move into the world of models with many agents, and nontrivial dispersion in wealth/human capital/income/etc..., these models are not amenable to being solved on pen and paper
- \triangleright For many problems, VFI is the slowest, but most robust solution
	- \triangleright There are other approaches, but they all tend to be more situational (although they often
	- \triangleright There are approaches (like policy function iteration, and others) that can speed up VFI
- I Oftentimes, without a smarter approach, the majority of your time will be spent in the simulation code, rather than solving the model

Aiyagari: Wrapping Up

- In general, our computational tools allow us to analyze these types of heterogenous agent problems
- \triangleright When we do, we will have to think more carefully about how to deal with market clearing and other equilibrium conditions
- \triangleright Very few limits (other than computational cost) on which dynamic models we can solve
- Especially when you move into the world of models with many agents, and nontrivial dispersion in wealth/human capital/income/etc..., these models are not amenable to being solved on pen and paper
- \triangleright For many problems, VFI is the slowest, but most robust solution
	- \triangleright There are other approaches, but they all tend to be more situational (although they often
	- \triangleright There are approaches (like policy function iteration, and others) that can speed up VFI
- I Oftentimes, without a smarter approach, the majority of your time will be spent in the simulation code, rather than solving the model

Aiyagari: Wrapping Up

- In general, our computational tools allow us to analyze these types of heterogenous agent problems
- \triangleright When we do, we will have to think more carefully about how to deal with market clearing and other equilibrium conditions
- \triangleright Very few limits (other than computational cost) on which dynamic models we can solve
- \triangleright Especially when you move into the world of models with many agents, and nontrivial dispersion in wealth/human capital/income/etc..., these models are not amenable to being solved on pen and paper
- \blacktriangleright For many problems, VFI is the slowest, but most robust solution
	- \blacktriangleright There are other approaches, but they all tend to be more situational (although they often obtain large speed gains)
	- \triangleright There are approaches (like policy function iteration, and others) that can speed up VFI
- In Oftentimes, without a smarter approach, the majority of your time will be spent in the simulation code, rather than solving the model

Section 2

[Policy Experiments](#page-30-0)

Predictive accuracy

There are many cases where the reduced-form elasticities you get from running a regression (even a well-identified regression) are not good predictors of how people will behave if you make changes to policy

IDED People who are forward-looking are much more responsive to permanent changes than temporary changes

 \triangleright People can respond to changes in policy in unexpected ways

 \triangleright Predictions that are not grounded in a model of people's underlying choices are vulnerable to the Lucas Critique: behavior rules estimated in the data are not invariant to policy

 \triangleright Making sense of the data available: Indirect Inference

▶ Often, economic models have good predictions, even out of sample.

Predictive accuracy

There are many cases where the reduced-form elasticities you get from running a regression (even a well-identified regression) are not good predictors of how people will behave if you make changes to policy

 \triangleright People who are forward-looking are much more responsive to permanent changes than temporary changes

You have to be careful about which elasticities you're actually measuring

 \triangleright People can respond to changes in policy in unexpected ways

 \triangleright Predictions that are not grounded in a model of people's underlying choices are vulnerable to the Lucas Critique: behavior rules estimated in the data are not invariant to policy

 \triangleright Making sense of the data available: Indirect Inference

 \triangleright Often, economic models have good predictions, even out of sample.

Predictive accuracy

There are many cases where the reduced-form elasticities you get from running a regression (even a well-identified regression) are not good predictors of how people will behave if you make changes to policy

 \triangleright People who are forward-looking are much more responsive to permanent changes than temporary changes

You have to be careful about which elasticities you're actually measuring

 \triangleright People can respond to changes in policy in unexpected ways

E.g. Changes in inflation expectations in the 1970s

 \triangleright Predictions that are not grounded in a model of people's underlying choices are vulnerable to the Lucas Critique: behavior rules estimated in the data are not invariant to policy

 \triangleright Making sense of the data available: Indirect Inference

 \triangleright Often, economic models have good predictions, even out of sample.

Predictive accuracy

There are many cases where the reduced-form elasticities you get from running a regression (even a well-identified regression) are not good predictors of how people will behave if you make changes to policy

 \triangleright People who are forward-looking are much more responsive to permanent changes than temporary changes

You have to be careful about which elasticities you're actually measuring

 \triangleright People can respond to changes in policy in unexpected ways

E.g. Changes in inflation expectations in the 1970s

- \triangleright Predictions that are not grounded in a model of people's underlying choices are vulnerable to the Lucas Critique: behavior rules estimated in the data are not invariant to policy
- \blacktriangleright Making sense of the data available: Indirect Inference

 \triangleright Often, economic models have good predictions, even out of sample.

Predictive accuracy

There are many cases where the reduced-form elasticities you get from running a regression (even a well-identified regression) are not good predictors of how people will behave if you make changes to policy

 \triangleright People who are forward-looking are much more responsive to permanent changes than temporary changes

You have to be careful about which elasticities you're actually measuring

 \triangleright People can respond to changes in policy in unexpected ways

E.g. Changes in inflation expectations in the 1970s

- \triangleright Predictions that are not grounded in a model of people's underlying choices are vulnerable to the Lucas Critique: behavior rules estimated in the data are not invariant to policy
- Making sense of the data available: Indirect Inference
- Often, economic models have good predictions, even out of sample.

Counterfactuals and Welfare Analysis

- \triangleright Counterfactuals are at the heart of the questions we want to answer:
	- \blacktriangleright How will people's behavior in response to a policy that has never been implemented?
	- \blacktriangleright How would they have behaved if we hadn't implemented some policy?
- In nontrivial models, we need a model in order to evaluate the welfare impacts of a change in policy
	- \triangleright Will people be better off on average after a tax reform?
	- \triangleright By how much?
	- \triangleright Will this reform increase or decrease inequality?
	- \blacktriangleright How are the gains distributed?
- I Without a model, you cannot hope to answer these kinds of questions

Tax Reform in Aiyagari

In Aiyagari models, generally people tend to over-save relative to what the social planner would choose

- \blacktriangleright Fear of a sequence of very many negative shocks
- If you hit your borrowing constraint, you may wind up with very low consumption
- \triangleright Strong precautionary motive for savings, at the individual level, to self-insure against income risk

In Suppose that the government imposes a tax on capital income τ **, and redistributes the** money with a lump sum tax T (let's say, $\tau = 30\%)$

 \blacktriangleright How can we model the effects of this tax reform?

Tax Reform in Aiyagari

In Aiyagari models, generally people tend to over-save relative to what the social planner would choose

- \blacktriangleright Fear of a sequence of very many negative shocks
- If you hit your borrowing constraint, you may wind up with very low consumption
- \triangleright Strong precautionary motive for savings, at the individual level, to self-insure against income risk
- **If** Suppose that the government imposes a tax on capital income τ , and redistributes the money with a lump sum tax T (let's say, $\tau = 30\%)$

 \blacktriangleright How can we model the effects of this tax reform?

Tax Reform in Aiyagari: Updated Model

$$
v(a, y) = \max_{c, a' \ge 0} u(c) + \beta \mathbb{E} [v(a', y')|y]
$$

s.t.
$$
c + a' \le [1 + r(1 - \tau)]a + y + T
$$

$$
\log(y') = \rho \log(y) + \epsilon
$$

$$
\epsilon \sim N(0, \sigma)
$$

$$
(5)
$$

- In Only change to the Bellman equations are in the budget constraint: consumers take τ and T as given
- New considerations:
	- **IF** Taxes distort savings behavior \implies different r in equilibrium
	- ▶ Government needs to balance its budget \implies find T such that

$$
\int \int \tau r a \,\lambda(a, y) \, da \, dy = T
$$

 \triangleright Both of these will change consumer behavior – we have to solve for all of them jointly

- Fix $\tau = 30\%$. Treat these market clearing conditions as nested problems:
	- \triangleright Define $D(r, T)$ to be the government's budget deficit
	- Define $ED(r, T)$ to be the excess demand for capital
	- \blacktriangleright Algorithm:
		-

Fix $\tau = 30\%$. Treat these market clearing conditions as nested problems:

- \triangleright Define $D(r, T)$ to be the government's budget deficit
- Define $ED(r, T)$ to be the excess demand for capital

Algorithm:

1. For any given r, solve for the T that balances the government's budget (solving and simulating the model). That is, solve the root finding problem

$$
D(r, T) = 0
$$

as a function of T, holding r fixed. Call the results $T^*(r)$

2. Solve the root finding problem for

 $ED(r, T^*(r)) = 0$

Call the result r^*

Fix $\tau = 30\%$. Treat these market clearing conditions as nested problems:

- \triangleright Define $D(r, T)$ to be the government's budget deficit
- Define $ED(r, T)$ to be the excess demand for capital
- Algorithm:
	- 1. For any given r, solve for the T that balances the government's budget (solving and simulating the model). That is, solve the root finding problem

$$
D(r, T) = 0
$$

as a function of T, holding r fixed. Call the results $T^*(r)$

2. Solve the root finding problem for

 $ED(r, T^*(r)) = 0$

Call the result r^*

Fix $\tau = 30\%$. Treat these market clearing conditions as nested problems:

- \triangleright Define $D(r, T)$ to be the government's budget deficit
- Define $ED(r, T)$ to be the excess demand for capital
- Algorithm:
	- 1. For any given r, solve for the T that balances the government's budget (solving and simulating the model). That is, solve the root finding problem

$$
D(r, T) = 0
$$

as a function of T, holding r fixed. Call the results $T^*(r)$

2. Solve the root finding problem for

 $ED(r, T^*(r)) = 0$

Call the result r^*

Fix $\tau = 30\%$. Treat these market clearing conditions as nested problems:

- \triangleright Define $D(r, T)$ to be the government's budget deficit
- Define $ED(r, T)$ to be the excess demand for capital
- Algorithm:
	- 1. For any given r, solve for the T that balances the government's budget (solving and simulating the model). That is, solve the root finding problem

$$
D(r, T) = 0
$$

as a function of T, holding r fixed. Call the results $T^*(r)$

2. Solve the root finding problem for

 $ED(r, T^*(r)) = 0$

Call the result r^*

▶ Our final (r, T) are $(r^*, T^*(r^*)$).

We'll go over code for how to do this in tutorial