
1/32

Lecture 7: Function Approximation

Jacob Adenbaum

University of Edinburgh

Spring 2023

2/32

Where we’re going
The Neoclassical Growth Model

I Suppose we want to solve the problem:
V (k, z) = max

c,k′,n
u(c, n) + βE [V (k ′, z ′) | z]

s.t. c + k ′ = zF (k, n) Resource Constraint
log(z ′) = ρ log(z) + ε log(z) is an AR(1)

ε ∼ N(0, σ) Shocks to z are log-normal

(1)

where
I c is consumption
I k is capital, and r is the rental price of capital
I n is labor supply, and w is the wage
I F is a constant returns to scale production function
I β, ρ and σ are paramters

I If we can’t get a solution by hand, then what does “solve this problem” even mean?

2/32

Where we’re going
The Neoclassical Growth Model

I Suppose we want to solve the problem:
V (k, z) = max

c,k′,n
u(c, n) + βE [V (k ′, z ′) | z]

s.t. c + k ′ = zF (k, n) Resource Constraint
log(z ′) = ρ log(z) + ε log(z) is an AR(1)

ε ∼ N(0, σ) Shocks to z are log-normal

(1)

where
I c is consumption
I k is capital, and r is the rental price of capital
I n is labor supply, and w is the wage
I F is a constant returns to scale production function
I β, ρ and σ are paramters

I If we can’t get a solution by hand, then what does “solve this problem” even mean?

3/32

What is a “solution” in quantitative economics?

V (k, z) = max
c,k′,n

u(c, n) + βE [V (k ′, z ′) | z]

s.t. c + k ′ = zF (k, n) Resource Constraint
log(z ′) = ρ log(z) + ε log(z) is an AR(1)

ε ∼ N(0, σ) Shocks to z are log-normal

(1)

I We will see next week that there is a unique function V : R2 → R that satisfies eq. (1)
I In general, however, we cannot get an exact formula for V (a “closed-form solution”)

I We have to settle for finding an approximation of V : call it V̂
I As long as the solution to eq. (1) is unique, if we find an approximation V̂ that also satisfies

it, then we can call it a day
I It turns out that if we repeatedly solve the maximization problem above, starting from an

initial guess and updating V̂ each iteration, we can be sure that we will converge to the true
solution

I This process, called value function iteration is what we will be learning about next week

4/32

This week: Function Approximation

I This week, we will be focusing on different methods to approximate V with some other
function V̂

I The key questions we’ll be answering:

1. What does it mean to say that V̂ is “close” to V (i.e, that it approximates it well)

2. What kinds of approximations work well in practice?

3. How do we represent these approximations on a computer?

4. How can we calculate them efficiently?

5/32

Section 1

Distance, Functions, and the Generalized Dot Product

6/32

How do we measure distance in Rn?
I Suppose I have two points in Rn: x and y

I How do I measure how far apart they are?

I Pythagorean theorem says: draw the
corresponding right triangle, and use

a2 + b2 = c2

I In this case
c2 = (y1 − x1)

2 + (y2 − x2)
2

I This happens to correspond nicely with
the norm of the difference between these
two points:

c2 = ||y − x ||2 = (y − x) · (y − x)
Recall that ||x ||2 := x · x =

∑n
i=1 x2

i

x

y

6/32

How do we measure distance in Rn?
I Suppose I have two points in Rn: x and y

I How do I measure how far apart they are?

I Pythagorean theorem says: draw the
corresponding right triangle, and use

a2 + b2 = c2

I In this case
c2 = (y1 − x1)

2 + (y2 − x2)
2

I This happens to correspond nicely with
the norm of the difference between these
two points:

c2 = ||y − x ||2 = (y − x) · (y − x)
Recall that ||x ||2 := x · x =

∑n
i=1 x2

i

x

y

c

a

b

6/32

How do we measure distance in Rn?
I Suppose I have two points in Rn: x and y

I How do I measure how far apart they are?

I Pythagorean theorem says: draw the
corresponding right triangle, and use

a2 + b2 = c2

I In this case
c2 = (y1 − x1)

2 + (y2 − x2)
2

I This happens to correspond nicely with
the norm of the difference between these
two points:

c2 = ||y − x ||2 = (y − x) · (y − x)
Recall that ||x ||2 := x · x =

∑n
i=1 x2

i

x

y

c

y1 − x1

y2 − x2

7/32

The dot product
I We’ve already seen the dot product show up:

x · y :=
n∑

i=1
xiyi

I It has this natural connection to our notion of distance:

||y − x ||2 =
n∑

i=1
(yi − xi)

2 = (y − x) · (y − x)

I It is integral to what matrix multiplication looks like:
a1
a2
...

an

b1 b2 . . . bk

 =

a1 · b1 a1 · b2 . . . a1 · bk
a2 · b1 a2 · b2 . . . a2 · bk

...
...

. . .
...

an · b1 an · b2 . . . an · bk

I But it turns out that the dot product is more important than just that: it also encodes

whether or not two vectors are orthogonal (perpendicular) to each other

7/32

The dot product
I We’ve already seen the dot product show up:

x · y :=
n∑

i=1
xiyi

I It has this natural connection to our notion of distance:

||y − x ||2 =
n∑

i=1
(yi − xi)

2 = (y − x) · (y − x)

I It is integral to what matrix multiplication looks like:
a1
a2
...

an

b1 b2 . . . bk

 =

a1 · b1 a1 · b2 . . . a1 · bk
a2 · b1 a2 · b2 . . . a2 · bk

...
...

. . .
...

an · b1 an · b2 . . . an · bk

I But it turns out that the dot product is more important than just that: it also encodes

whether or not two vectors are orthogonal (perpendicular) to each other

7/32

The dot product
I We’ve already seen the dot product show up:

x · y :=
n∑

i=1
xiyi

I It has this natural connection to our notion of distance:

||y − x ||2 =
n∑

i=1
(yi − xi)

2 = (y − x) · (y − x)

I It is integral to what matrix multiplication looks like:
a1
a2
...

an

b1 b2 . . . bk

 =

a1 · b1 a1 · b2 . . . a1 · bk
a2 · b1 a2 · b2 . . . a2 · bk

...
...

. . .
...

an · b1 an · b2 . . . an · bk

I But it turns out that the dot product is more important than just that: it also encodes

whether or not two vectors are orthogonal (perpendicular) to each other

7/32

The dot product
I We’ve already seen the dot product show up:

x · y :=
n∑

i=1
xiyi

I It has this natural connection to our notion of distance:

||y − x ||2 =
n∑

i=1
(yi − xi)

2 = (y − x) · (y − x)

I It is integral to what matrix multiplication looks like:
a1
a2
...

an

b1 b2 . . . bk

 =

a1 · b1 a1 · b2 . . . a1 · bk
a2 · b1 a2 · b2 . . . a2 · bk

...
...

. . .
...

an · b1 an · b2 . . . an · bk

I But it turns out that the dot product is more important than just that: it also encodes

whether or not two vectors are orthogonal (perpendicular) to each other

8/32

The dot product encodes the angle between two vectors
I Suppose we have two vectors x and y that lie on

the unit circle (||x || = ||y || = 1)
I We know that both vectors are defined (in polar

coordinates) by their angles:
x = (cos θx , sin θx) y = (cos θy , sin θy)

I Recall the cosine subtraction formula:
cos(α− β) = cosα cosβ + sinα sinβ (2)

I That means that the dot product is just:
x · y =cos θx cos θy + sin θx sin θy Def of dot product

=cos(θy − θx) By eq. (2)

I So we know that x · y = 0 if and only if the cosine
of the angle between them is zero. (I.e, the
vectors are orthogonal)

e1

e2

x
y

This generalizes to when x and y are not on
the unit circle, as well as to Rn. In the
general case:

x · y = ||x || × ||y || × cos θ

8/32

The dot product encodes the angle between two vectors
I Suppose we have two vectors x and y that lie on

the unit circle (||x || = ||y || = 1)
I We know that both vectors are defined (in polar

coordinates) by their angles:
x = (cos θx , sin θx) y = (cos θy , sin θy)

I Recall the cosine subtraction formula:
cos(α− β) = cosα cosβ + sinα sinβ (2)

I That means that the dot product is just:
x · y =cos θx cos θy + sin θx sin θy Def of dot product

=cos(θy − θx) By eq. (2)

I So we know that x · y = 0 if and only if the cosine
of the angle between them is zero. (I.e, the
vectors are orthogonal)

e1

e2

x
y

θx

θy

This generalizes to when x and y are not on
the unit circle, as well as to Rn. In the
general case:

x · y = ||x || × ||y || × cos θ

8/32

The dot product encodes the angle between two vectors
I Suppose we have two vectors x and y that lie on

the unit circle (||x || = ||y || = 1)
I We know that both vectors are defined (in polar

coordinates) by their angles:
x = (cos θx , sin θx) y = (cos θy , sin θy)

I Recall the cosine subtraction formula:
cos(α− β) = cosα cosβ + sinα sinβ (2)

I That means that the dot product is just:
x · y =cos θx cos θy + sin θx sin θy Def of dot product

=cos(θy − θx) By eq. (2)

I So we know that x · y = 0 if and only if the cosine
of the angle between them is zero. (I.e, the
vectors are orthogonal)

e1

e2

x
y

θx

θy

This generalizes to when x and y are not on
the unit circle, as well as to Rn. In the
general case:

x · y = ||x || × ||y || × cos θ

8/32

The dot product encodes the angle between two vectors
I Suppose we have two vectors x and y that lie on

the unit circle (||x || = ||y || = 1)
I We know that both vectors are defined (in polar

coordinates) by their angles:
x = (cos θx , sin θx) y = (cos θy , sin θy)

I Recall the cosine subtraction formula:
cos(α− β) = cosα cosβ + sinα sinβ (2)

I That means that the dot product is just:
x · y =cos θx cos θy + sin θx sin θy Def of dot product

=cos(θy − θx) By eq. (2)

I So we know that x · y = 0 if and only if the cosine
of the angle between them is zero. (I.e, the
vectors are orthogonal)

e1

e2

x
y

θx

θy

This generalizes to when x and y are not on
the unit circle, as well as to Rn. In the
general case:

x · y = ||x || × ||y || × cos θ

8/32

The dot product encodes the angle between two vectors
I Suppose we have two vectors x and y that lie on

the unit circle (||x || = ||y || = 1)
I We know that both vectors are defined (in polar

coordinates) by their angles:
x = (cos θx , sin θx) y = (cos θy , sin θy)

I Recall the cosine subtraction formula:
cos(α− β) = cosα cosβ + sinα sinβ (2)

I That means that the dot product is just:
x · y =cos θx cos θy + sin θx sin θy Def of dot product

=cos(θy − θx) By eq. (2)

I So we know that x · y = 0 if and only if the cosine
of the angle between them is zero. (I.e, the
vectors are orthogonal)

e1

e2

x
y

θx

θy

This generalizes to when x and y are not on
the unit circle, as well as to Rn. In the
general case:

x · y = ||x || × ||y || × cos θ

8/32

The dot product encodes the angle between two vectors
I Suppose we have two vectors x and y that lie on

the unit circle (||x || = ||y || = 1)
I We know that both vectors are defined (in polar

coordinates) by their angles:
x = (cos θx , sin θx) y = (cos θy , sin θy)

I Recall the cosine subtraction formula:
cos(α− β) = cosα cosβ + sinα sinβ (2)

I That means that the dot product is just:
x · y =cos θx cos θy + sin θx sin θy Def of dot product

=cos(θy − θx) By eq. (2)

I So we know that x · y = 0 if and only if the cosine
of the angle between them is zero. (I.e, the
vectors are orthogonal)

e1

e2

x
y

θx

θy

This generalizes to when x and y are not on
the unit circle, as well as to Rn. In the
general case:

x · y = ||x || × ||y || × cos θ

9/32

How can we represent functions on a computer?
I If we don’t have an explicit formula, we

can try encoding the function values on a
grid of points

I Let f (x) = sin(x), and consider a grid
with n + 1 points:

Xn =

{
2πi
n

∣∣∣∣ i = 0, 1, . . . , n
}

I For every point xi , we save a corresponding

f̂ n
i = sin

(
2πi
n

)
I Maybe we imagine that if we’re off grid,

we will interpolate linearly (we’ll talk
about this later)

I We hope that if n gets large, this is going
to be good enough...

We’re going to do something more
sophisticated later

9/32

How can we represent functions on a computer?
I If we don’t have an explicit formula, we

can try encoding the function values on a
grid of points

I Let f (x) = sin(x), and consider a grid
with n + 1 points:

Xn =

{
2πi
n

∣∣∣∣ i = 0, 1, . . . , n
}

I For every point xi , we save a corresponding

f̂ n
i = sin

(
2πi
n

)
I Maybe we imagine that if we’re off grid,

we will interpolate linearly (we’ll talk
about this later)

I We hope that if n gets large, this is going
to be good enough... We’re going to do something more sophisticated later

9/32

How can we represent functions on a computer?
I If we don’t have an explicit formula, we

can try encoding the function values on a
grid of points

I Let f (x) = sin(x), and consider a grid
with n + 1 points:

Xn =

{
2πi
n

∣∣∣∣ i = 0, 1, . . . , n
}

I For every point xi , we save a corresponding

f̂ n
i = sin

(
2πi
n

)
I Maybe we imagine that if we’re off grid,

we will interpolate linearly (we’ll talk
about this later)

I We hope that if n gets large, this is going
to be good enough... We’re going to do something more sophisticated later

9/32

How can we represent functions on a computer?
I If we don’t have an explicit formula, we

can try encoding the function values on a
grid of points

I Let f (x) = sin(x), and consider a grid
with n + 1 points:

Xn =

{
2πi
n

∣∣∣∣ i = 0, 1, . . . , n
}

I For every point xi , we save a corresponding

f̂ n
i = sin

(
2πi
n

)
I Maybe we imagine that if we’re off grid,

we will interpolate linearly (we’ll talk
about this later)

I We hope that if n gets large, this is going
to be good enough... We’re going to do something more sophisticated later

9/32

How can we represent functions on a computer?
I If we don’t have an explicit formula, we

can try encoding the function values on a
grid of points

I Let f (x) = sin(x), and consider a grid
with n + 1 points:

Xn =

{
2πi
n

∣∣∣∣ i = 0, 1, . . . , n
}

I For every point xi , we save a corresponding

f̂ n
i = sin

(
2πi
n

)
I Maybe we imagine that if we’re off grid,

we will interpolate linearly (we’ll talk
about this later)

I We hope that if n gets large, this is going
to be good enough... We’re going to do something more sophisticated later

9/32

How can we represent functions on a computer?
I If we don’t have an explicit formula, we

can try encoding the function values on a
grid of points

I Let f (x) = sin(x), and consider a grid
with n + 1 points:

Xn =

{
2πi
n

∣∣∣∣ i = 0, 1, . . . , n
}

I For every point xi , we save a corresponding

f̂ n
i = sin

(
2πi
n

)
I Maybe we imagine that if we’re off grid,

we will interpolate linearly (we’ll talk
about this later)

I We hope that if n gets large, this is going
to be good enough... We’re going to do something more sophisticated later

9/32

How can we represent functions on a computer?
I If we don’t have an explicit formula, we

can try encoding the function values on a
grid of points

I Let f (x) = sin(x), and consider a grid
with n + 1 points:

Xn =

{
2πi
n

∣∣∣∣ i = 0, 1, . . . , n
}

I For every point xi , we save a corresponding

f̂ n
i = sin

(
2πi
n

)
I Maybe we imagine that if we’re off grid,

we will interpolate linearly (we’ll talk
about this later)

I We hope that if n gets large, this is going
to be good enough... We’re going to do something more sophisticated later

10/32

What is the “length” of a function?

Consider a function f on [0,1], and think about f as the vector f̂ n ∈ Rn+1 with

Xn =

{
i
n

∣∣∣∣ i = 0, . . . , n
}

I Let’s try a definition of ‖f ‖:

‖f ‖2 := lim
n→∞

1
n‖f̂ n‖ (3)

We have to divide by n because we’re increasing the number of dimensions we’re summing over.

I Define ∆xn = 1
n . We can write this as:

‖f ‖2 = lim
n→∞

1
n

n∑
i=0

(
f̂ n
i
)2

= lim
n→∞

n∑
i=0

f (xi)
2∆xn︸ ︷︷ ︸

A Riemann Sum

=

∫ 1

0
f (x)2dx

This works on more general domains as well (not just [0,1]) as well as for nonuniform grids

10/32

What is the “length” of a function?

Consider a function f on [0,1], and think about f as the vector f̂ n ∈ Rn+1 with

Xn =

{
i
n

∣∣∣∣ i = 0, . . . , n
}

I Let’s try a definition of ‖f ‖:

‖f ‖2 := lim
n→∞

1
n‖f̂ n‖ (3)

We have to divide by n because we’re increasing the number of dimensions we’re summing over.

I Define ∆xn = 1
n . We can write this as:

‖f ‖2 = lim
n→∞

1
n

n∑
i=0

(
f̂ n
i
)2

= lim
n→∞

n∑
i=0

f (xi)
2∆xn︸ ︷︷ ︸

A Riemann Sum

=

∫ 1

0
f (x)2dx

This works on more general domains as well (not just [0,1]) as well as for nonuniform grids

10/32

What is the “length” of a function?

Consider a function f on [0,1], and think about f as the vector f̂ n ∈ Rn+1 with

Xn =

{
i
n

∣∣∣∣ i = 0, . . . , n
}

I Let’s try a definition of ‖f ‖:

‖f ‖2 := lim
n→∞

1
n‖f̂ n‖ (3)

We have to divide by n because we’re increasing the number of dimensions we’re summing over.

I Define ∆xn = 1
n . We can write this as:

‖f ‖2 = lim
n→∞

1
n

n∑
i=0

(
f̂ n
i
)2

= lim
n→∞

n∑
i=0

f (xi)
2∆xn︸ ︷︷ ︸

A Riemann Sum

=

∫ 1

0
f (x)2dx

This works on more general domains as well (not just [0,1]) as well as for nonuniform grids

10/32

What is the “length” of a function?

Consider a function f on [0,1], and think about f as the vector f̂ n ∈ Rn+1 with

Xn =

{
i
n

∣∣∣∣ i = 0, . . . , n
}

I Let’s try a definition of ‖f ‖:

‖f ‖2 := lim
n→∞

1
n‖f̂ n‖ (3)

We have to divide by n because we’re increasing the number of dimensions we’re summing over.

I Define ∆xn = 1
n . We can write this as:

‖f ‖2 = lim
n→∞

1
n

n∑
i=0

(
f̂ n
i
)2

= lim
n→∞

n∑
i=0

f (xi)
2∆xn︸ ︷︷ ︸

A Riemann Sum

=

∫ 1

0
f (x)2dx

This works on more general domains as well (not just [0,1]) as well as for nonuniform grids

11/32

Distance between functions

I We can now define the distance between
functions:

||f − g ||2 =

∫ 1

0

(
f (x)− g(x)

)2
dx

I Suppose we have a function f : [0, 1] → R,
and a proposed approximation
f̂ : [0, 1] → R.

I Question: How should we judge how
“good” and approximation f̂ is?

I Answer: Look at

‖f − f̂ ‖2 =

∫ 1

0

(
f (x)− f̂ (x)

)2
dx

11/32

Distance between functions

I We can now define the distance between
functions:

||f − g ||2 =

∫ 1

0

(
f (x)− g(x)

)2
dx

I Suppose we have a function f : [0, 1] → R,
and a proposed approximation
f̂ : [0, 1] → R.

I Question: How should we judge how
“good” and approximation f̂ is?

I Answer: Look at

‖f − f̂ ‖2 =

∫ 1

0

(
f (x)− f̂ (x)

)2
dx

11/32

Distance between functions

I We can now define the distance between
functions:

||f − g ||2 =

∫ 1

0

(
f (x)− g(x)

)2
dx

I Suppose we have a function f : [0, 1] → R,
and a proposed approximation
f̂ : [0, 1] → R.

I Question: How should we judge how
“good” and approximation f̂ is?

I Answer: Look at

‖f − f̂ ‖2 =

∫ 1

0

(
f (x)− f̂ (x)

)2
dx

12/32

Can functions be orthogonal?
Not examinable

I We can define something like a “dot
product” for functions:

〈f , g〉 :=
∫ 1

0
f (x)g(x)dx

I This is called an inner product

I Just like with the dot product

〈f , f 〉 = ||f ||2 =

∫ 1

0
f (x)2dx

I Even more importantly, if 〈f , g〉 = 0, that
means we can meaningfully say that these
function are orthogonal

Notice that in this case, f (x)g(x) = 0 since one of the
two functions is always zero. That means

〈f , g〉 = 0

and so f and g are orthogonal

13/32

Section 2

Interpolation with Global Polynomials

14/32

Interpolating a function
I Let f : [0, 1] → R be a continuous function

I Suppose you’ve already been given a grid X = {xi}n
i=1 and the evaluated y = {yi}n

i=1 where
yi = f (xi)

I It’s easy to approximate f on grid – we already calculated its values – but we want to be
able to approximate f off of the grid without evaluating f any more times

I Let’s look for a polynomial p(x) =
∑n−1

s=0 asx s that approximates the function well.

Notice that I’ve chosen a polynomial with as many coefficients as we have data points. If we want to fit
our data exactly, we will need as many degrees of freedom as we have observations.

I It should:
1. Fit our function exactly on the grid of xi

2. Approximate f well off-grid

i.e, ||f − p|| should be small, and ideally should approach zero as n increases

I This is called an interpolation problem

14/32

Interpolating a function
I Let f : [0, 1] → R be a continuous function

I Suppose you’ve already been given a grid X = {xi}n
i=1 and the evaluated y = {yi}n

i=1 where
yi = f (xi)

I It’s easy to approximate f on grid – we already calculated its values – but we want to be
able to approximate f off of the grid without evaluating f any more times

I Let’s look for a polynomial p(x) =
∑n−1

s=0 asx s that approximates the function well.

Notice that I’ve chosen a polynomial with as many coefficients as we have data points. If we want to fit
our data exactly, we will need as many degrees of freedom as we have observations.

I It should:
1. Fit our function exactly on the grid of xi

2. Approximate f well off-grid

i.e, ||f − p|| should be small, and ideally should approach zero as n increases

I This is called an interpolation problem

14/32

Interpolating a function
I Let f : [0, 1] → R be a continuous function

I Suppose you’ve already been given a grid X = {xi}n
i=1 and the evaluated y = {yi}n

i=1 where
yi = f (xi)

I It’s easy to approximate f on grid – we already calculated its values – but we want to be
able to approximate f off of the grid without evaluating f any more times

I Let’s look for a polynomial p(x) =
∑n−1

s=0 asx s that approximates the function well.

Notice that I’ve chosen a polynomial with as many coefficients as we have data points. If we want to fit
our data exactly, we will need as many degrees of freedom as we have observations.

I It should:
1. Fit our function exactly on the grid of xi

2. Approximate f well off-grid

i.e, ||f − p|| should be small, and ideally should approach zero as n increases

I This is called an interpolation problem

15/32

The Vandermonde Matrix

I If we want p(xi) = yi for all i , then that implies:
a0 + a1xi + a2x2

i + · · ·+ an−1xn−1 = yi for i = 1, . . . , n (4)

I Notice that this is a linear system of equations in the coefficients a:
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

︸ ︷︷ ︸

V

a0
a1
...

an−1

 =

y1
y2
...

yn

 (5)

I V is called the Vandermonde matrix
I It turns out that the solution to this system is unique, so long as the xi are distinct Proof

I Interpolating a function this way is called Lagrange Interpolation

15/32

The Vandermonde Matrix

I If we want p(xi) = yi for all i , then that implies:
a0 + a1xi + a2x2

i + · · ·+ an−1xn−1 = yi for i = 1, . . . , n (4)

I Notice that this is a linear system of equations in the coefficients a:
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

︸ ︷︷ ︸

V

a0
a1
...

an−1

 =

y1
y2
...

yn

 (5)

I V is called the Vandermonde matrix
I It turns out that the solution to this system is unique, so long as the xi are distinct Proof

I Interpolating a function this way is called Lagrange Interpolation

15/32

The Vandermonde Matrix

I If we want p(xi) = yi for all i , then that implies:
a0 + a1xi + a2x2

i + · · ·+ an−1xn−1 = yi for i = 1, . . . , n (4)

I Notice that this is a linear system of equations in the coefficients a:
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

︸ ︷︷ ︸

V

a0
a1
...

an−1

 =

y1
y2
...

yn

 (5)

I V is called the Vandermonde matrix
I It turns out that the solution to this system is unique, so long as the xi are distinct Proof

I Interpolating a function this way is called Lagrange Interpolation

16/32

Lagrange Interpolation in Practice

function vandermonde(X)
n = length(X)
V = [xi^s for xi in X, s in 0:n-1]
return V

end

lagrange(X,y)= vandermonde(X)\y

function evaluate(a, x)
sum(a[s] * x^(s-1) for s in eachindex(a))

end

16/32

Lagrange Interpolation in Practice

function vandermonde(X)
n = length(X)
V = [xi^s for xi in X, s in 0:n-1]
return V

end

lagrange(X,y)= vandermonde(X)\y

function evaluate(a, x)
sum(a[s] * x^(s-1) for s in eachindex(a))

end

16/32

Lagrange Interpolation in Practice

function vandermonde(X)
n = length(X)
V = [xi^s for xi in X, s in 0:n-1]
return V

end

lagrange(X,y)= vandermonde(X)\y

function evaluate(a, x)
sum(a[s] * x^(s-1) for s in eachindex(a))

end

16/32

Lagrange Interpolation in Practice

function vandermonde(X)
n = length(X)
V = [xi^s for xi in X, s in 0:n-1]
return V

end

lagrange(X,y)= vandermonde(X)\y

function evaluate(a, x)
sum(a[s] * x^(s-1) for s in eachindex(a))

end

17/32

Lagrange Interpolation can fail badly

I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly

I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly

I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly

I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly

I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly

I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly

I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly

I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly
I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

17/32

Lagrange Interpolation can fail badly
I So far, it seems Lagrange interpolation works well

I Unfortunately, there are a number of well known
cases where it fails catastrophically

I Consider
f (x) = 1

1 + x2

I When n = 4 the interpolant isn’t great, but 4 points
isn’t that many

I By the time we’re up to n = 11, it doesn’t look like
things are getting better

I In fact, you can show that this is a case where
Lagrange interpolation will never converge

I Adding more data does not fix the problem. This is
called the Runge phenomenon

18/32

How to avoid the Runge phenomenon

I The Runge phenomenon (explosive oscillation at the edges) tends to occur in most
polynomial interpolation schemes with evenly spaced grids
I High order polynomial terms tend to grow explosively as x gets larger
I When you try to hit the extra data points on the edge of the domain by adding a high order

polynomial term like x11, that induces even more oscillations elsewhere in the domain

I To avoid this, you can:
1. use another family of smooth polynomials called Chebyshev polynomials

2. use piecewise polynomials (Linear Interpolation, Splines, etc...)

I’ll define what all of these mean in just a couple of slides

18/32

How to avoid the Runge phenomenon

I The Runge phenomenon (explosive oscillation at the edges) tends to occur in most
polynomial interpolation schemes with evenly spaced grids
I High order polynomial terms tend to grow explosively as x gets larger
I When you try to hit the extra data points on the edge of the domain by adding a high order

polynomial term like x11, that induces even more oscillations elsewhere in the domain

I To avoid this, you can:
1. use another family of smooth polynomials called Chebyshev polynomials

2. use piecewise polynomials (Linear Interpolation, Splines, etc...)

I’ll define what all of these mean in just a couple of slides

19/32

Chebyshev Polynomials
I Define Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1]
I The family of polynomials {Tn}∞n=0 are called the Chebyshev polynomials
I Why are these actually polynomials?

I You can show that these functions satisfy the formula (recurrence relationship):

Tn+1(x) = 2xTn(x)− Tn−1(x) (6)

I If you start from T0 = cos(0) = 1 and T1(x) = cos(cos−1 x) = x (both clearly polynomials)
and you just keep multiplying by x and adding them together, you must end up with a
polynomial at the end

I Let’s see this in practice:
T2(x) = 2xT1(x)− T0(x) = 2x(x)− 1 = 2x2 − 1
T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x
T4(x) = 2xT3(x)− T2(x) = 2x(4x3 − 4x)− (2x2 − 1) = 8x4 − 8x2 + 1

...

19/32

Chebyshev Polynomials
I Define Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1]
I The family of polynomials {Tn}∞n=0 are called the Chebyshev polynomials
I Why are these actually polynomials?

I You can show that these functions satisfy the formula (recurrence relationship):

Tn+1(x) = 2xTn(x)− Tn−1(x) (6)

I If you start from T0 = cos(0) = 1 and T1(x) = cos(cos−1 x) = x (both clearly polynomials)
and you just keep multiplying by x and adding them together, you must end up with a
polynomial at the end

I Let’s see this in practice:
T2(x) = 2xT1(x)− T0(x) = 2x(x)− 1 = 2x2 − 1
T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x
T4(x) = 2xT3(x)− T2(x) = 2x(4x3 − 4x)− (2x2 − 1) = 8x4 − 8x2 + 1

...

19/32

Chebyshev Polynomials
I Define Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1]
I The family of polynomials {Tn}∞n=0 are called the Chebyshev polynomials
I Why are these actually polynomials?

I You can show that these functions satisfy the formula (recurrence relationship):

Tn+1(x) = 2xTn(x)− Tn−1(x) (6)

I If you start from T0 = cos(0) = 1 and T1(x) = cos(cos−1 x) = x (both clearly polynomials)
and you just keep multiplying by x and adding them together, you must end up with a
polynomial at the end

I Let’s see this in practice:
T2(x) = 2xT1(x)− T0(x) = 2x(x)− 1 = 2x2 − 1
T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x
T4(x) = 2xT3(x)− T2(x) = 2x(4x3 − 4x)− (2x2 − 1) = 8x4 − 8x2 + 1

...

19/32

Chebyshev Polynomials
I Define Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1]
I The family of polynomials {Tn}∞n=0 are called the Chebyshev polynomials
I Why are these actually polynomials?

I You can show that these functions satisfy the formula (recurrence relationship):

Tn+1(x) = 2xTn(x)− Tn−1(x) (6)

I If you start from T0 = cos(0) = 1 and T1(x) = cos(cos−1 x) = x (both clearly polynomials)
and you just keep multiplying by x and adding them together, you must end up with a
polynomial at the end

I Let’s see this in practice:
T2(x) = 2xT1(x)− T0(x) = 2x(x)− 1 = 2x2 − 1
T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x
T4(x) = 2xT3(x)− T2(x) = 2x(4x3 − 4x)− (2x2 − 1) = 8x4 − 8x2 + 1

...

19/32

Chebyshev Polynomials
I Define Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1]
I The family of polynomials {Tn}∞n=0 are called the Chebyshev polynomials
I Why are these actually polynomials?

I You can show that these functions satisfy the formula (recurrence relationship):

Tn+1(x) = 2xTn(x)− Tn−1(x) (6)

I If you start from T0 = cos(0) = 1 and T1(x) = cos(cos−1 x) = x (both clearly polynomials)
and you just keep multiplying by x and adding them together, you must end up with a
polynomial at the end

I Let’s see this in practice:
T2(x) = 2xT1(x)− T0(x) = 2x(x)− 1 = 2x2 − 1
T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x
T4(x) = 2xT3(x)− T2(x) = 2x(4x3 − 4x)− (2x2 − 1) = 8x4 − 8x2 + 1

...

19/32

Chebyshev Polynomials
I Define Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1]
I The family of polynomials {Tn}∞n=0 are called the Chebyshev polynomials
I Why are these actually polynomials?

I You can show that these functions satisfy the formula (recurrence relationship):

Tn+1(x) = 2xTn(x)− Tn−1(x) (6)

I If you start from T0 = cos(0) = 1 and T1(x) = cos(cos−1 x) = x (both clearly polynomials)
and you just keep multiplying by x and adding them together, you must end up with a
polynomial at the end

I Let’s see this in practice:
T2(x) = 2xT1(x)− T0(x) = 2x(x)− 1 = 2x2 − 1
T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x
T4(x) = 2xT3(x)− T2(x) = 2x(4x3 − 4x)− (2x2 − 1) = 8x4 − 8x2 + 1

...

20/32

Properties of Chebyshev Polynomials
I Bounded between [-1, 1] so long as x ∈ [−1, 1]
I These polynomials are orthogonal to each other

Specifically (and not examinable), they are orthogonal with
respect to an appropriate weighting function. I.e,∫ 1

−1
Tn(x)Tk(x)w(x)dx = 0

for n 6= k and w(x) = 1√
1−x2

I You want nodes {xk} that are unevenly spaced.
I There are a known set of interpolation points that

minimize the approximation error:

xk = − cos

(
2k − 1

2n π

)
for k = 1, . . . , n

I Chebyshev Approximation Theorem: As long as
our function f is smooth (has continuous kth
derivatives for some k ≥ 1) Chebyshev
approximation converges “nicely” to f Theorem

20/32

Properties of Chebyshev Polynomials
I Bounded between [-1, 1] so long as x ∈ [−1, 1]
I These polynomials are orthogonal to each other

Specifically (and not examinable), they are orthogonal with
respect to an appropriate weighting function. I.e,∫ 1

−1
Tn(x)Tk(x)w(x)dx = 0

for n 6= k and w(x) = 1√
1−x2

I You want nodes {xk} that are unevenly spaced.
I There are a known set of interpolation points that

minimize the approximation error:

xk = − cos

(
2k − 1

2n π

)
for k = 1, . . . , n

I Chebyshev Approximation Theorem: As long as
our function f is smooth (has continuous kth
derivatives for some k ≥ 1) Chebyshev
approximation converges “nicely” to f Theorem

20/32

Properties of Chebyshev Polynomials
I Bounded between [-1, 1] so long as x ∈ [−1, 1]
I These polynomials are orthogonal to each other

Specifically (and not examinable), they are orthogonal with
respect to an appropriate weighting function. I.e,∫ 1

−1
Tn(x)Tk(x)w(x)dx = 0

for n 6= k and w(x) = 1√
1−x2

I You want nodes {xk} that are unevenly spaced.
I There are a known set of interpolation points that

minimize the approximation error:

xk = − cos

(
2k − 1

2n π

)
for k = 1, . . . , n

I Chebyshev Approximation Theorem: As long as
our function f is smooth (has continuous kth
derivatives for some k ≥ 1) Chebyshev
approximation converges “nicely” to f Theorem

20/32

Properties of Chebyshev Polynomials
I Bounded between [-1, 1] so long as x ∈ [−1, 1]
I These polynomials are orthogonal to each other

Specifically (and not examinable), they are orthogonal with
respect to an appropriate weighting function. I.e,∫ 1

−1
Tn(x)Tk(x)w(x)dx = 0

for n 6= k and w(x) = 1√
1−x2

I You want nodes {xk} that are unevenly spaced.
I There are a known set of interpolation points that

minimize the approximation error:

xk = − cos

(
2k − 1

2n π

)
for k = 1, . . . , n

I Chebyshev Approximation Theorem: As long as
our function f is smooth (has continuous kth
derivatives for some k ≥ 1) Chebyshev
approximation converges “nicely” to f Theorem

21/32

Chebyshev Regression (Approximation) Algorithm
We want an nth degree Chebyshev approximation:

1. Compute the m ≥ n + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = − cos

(
2k − 1

2m π

)
k = 1, . . . ,m

2. For interpolation on [a, b] instead of [−1, 1], adjust the nodes to the appropriate interval:

xk = (zk + 1)
(

b − a
2

)
+ a k = 1, . . . ,m

3. Evaluate f at the appropriate points: yk = f (xk) for k = 1, . . . ,m

4. Compute the Chebyshev coefficients:

ci =

(∑m
k=1 ykTi(zk)∑m
k=1 Ti(zk)2

)
5. Construct the approximation:

f̂ (x) =
n∑

i=0
ciTi

(
2x − a

b − a − 1
)

(7)

21/32

Chebyshev Regression (Approximation) Algorithm
We want an nth degree Chebyshev approximation:

1. Compute the m ≥ n + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = − cos

(
2k − 1

2m π

)
k = 1, . . . ,m

2. For interpolation on [a, b] instead of [−1, 1], adjust the nodes to the appropriate interval:

xk = (zk + 1)
(

b − a
2

)
+ a k = 1, . . . ,m

3. Evaluate f at the appropriate points: yk = f (xk) for k = 1, . . . ,m

4. Compute the Chebyshev coefficients:

ci =

(∑m
k=1 ykTi(zk)∑m
k=1 Ti(zk)2

)
5. Construct the approximation:

f̂ (x) =
n∑

i=0
ciTi

(
2x − a

b − a − 1
)

(7)

21/32

Chebyshev Regression (Approximation) Algorithm
We want an nth degree Chebyshev approximation:

1. Compute the m ≥ n + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = − cos

(
2k − 1

2m π

)
k = 1, . . . ,m

2. For interpolation on [a, b] instead of [−1, 1], adjust the nodes to the appropriate interval:

xk = (zk + 1)
(

b − a
2

)
+ a k = 1, . . . ,m

3. Evaluate f at the appropriate points: yk = f (xk) for k = 1, . . . ,m

4. Compute the Chebyshev coefficients:

ci =

(∑m
k=1 ykTi(zk)∑m
k=1 Ti(zk)2

)
5. Construct the approximation:

f̂ (x) =
n∑

i=0
ciTi

(
2x − a

b − a − 1
)

(7)

21/32

Chebyshev Regression (Approximation) Algorithm
We want an nth degree Chebyshev approximation:

1. Compute the m ≥ n + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = − cos

(
2k − 1

2m π

)
k = 1, . . . ,m

2. For interpolation on [a, b] instead of [−1, 1], adjust the nodes to the appropriate interval:

xk = (zk + 1)
(

b − a
2

)
+ a k = 1, . . . ,m

3. Evaluate f at the appropriate points: yk = f (xk) for k = 1, . . . ,m

4. Compute the Chebyshev coefficients:

ci =

(∑m
k=1 ykTi(zk)∑m
k=1 Ti(zk)2

)
5. Construct the approximation:

f̂ (x) =
n∑

i=0
ciTi

(
2x − a

b − a − 1
)

(7)

21/32

Chebyshev Regression (Approximation) Algorithm
We want an nth degree Chebyshev approximation:

1. Compute the m ≥ n + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = − cos

(
2k − 1

2m π

)
k = 1, . . . ,m

2. For interpolation on [a, b] instead of [−1, 1], adjust the nodes to the appropriate interval:

xk = (zk + 1)
(

b − a
2

)
+ a k = 1, . . . ,m

3. Evaluate f at the appropriate points: yk = f (xk) for k = 1, . . . ,m

4. Compute the Chebyshev coefficients:

ci =

(∑m
k=1 ykTi(zk)∑m
k=1 Ti(zk)2

)
5. Construct the approximation:

f̂ (x) =
n∑

i=0
ciTi

(
2x − a

b − a − 1
)

(7)

22/32

Chebyshev in Practice
m = n + 1

T(n, x) = cos(n * acos(x))
z = [-cos((2k -1)/(2m) * pi) for k = 1:m]
x = (z .+ 1) .* (b - a)/2 .+ a
y = f.(x)

c = map(0:m) do i # Calculate coefs
num = sum(y[k] * T(i, z[k])

for k in 1:m)
den = sum(T(i, z[k])^2

for k in 1:m)
return num/den

end

fh(x) = sum(# evaluate approx
ci * T(i, 2 * (x-a)/(b-a) - 1)
for (ci, i) in zip(c, 0:n)

)

22/32

Chebyshev in Practice
m = n + 1

T(n, x) = cos(n * acos(x))
z = [-cos((2k -1)/(2m) * pi) for k = 1:m]
x = (z .+ 1) .* (b - a)/2 .+ a
y = f.(x)

c = map(0:m) do i # Calculate coefs
num = sum(y[k] * T(i, z[k])

for k in 1:m)
den = sum(T(i, z[k])^2

for k in 1:m)
return num/den

end

fh(x) = sum(# evaluate approx
ci * T(i, 2 * (x-a)/(b-a) - 1)
for (ci, i) in zip(c, 0:n)

)

22/32

Chebyshev in Practice
m = n + 1

T(n, x) = cos(n * acos(x))
z = [-cos((2k -1)/(2m) * pi) for k = 1:m]
x = (z .+ 1) .* (b - a)/2 .+ a
y = f.(x)

c = map(0:m) do i # Calculate coefs
num = sum(y[k] * T(i, z[k])

for k in 1:m)
den = sum(T(i, z[k])^2

for k in 1:m)
return num/den

end

fh(x) = sum(# evaluate approx
ci * T(i, 2 * (x-a)/(b-a) - 1)
for (ci, i) in zip(c, 0:n)

)

22/32

Chebyshev in Practice
m = n + 1

T(n, x) = cos(n * acos(x))
z = [-cos((2k -1)/(2m) * pi) for k = 1:m]
x = (z .+ 1) .* (b - a)/2 .+ a
y = f.(x)

c = map(0:m) do i # Calculate coefs
num = sum(y[k] * T(i, z[k])

for k in 1:m)
den = sum(T(i, z[k])^2

for k in 1:m)
return num/den

end

fh(x) = sum(# evaluate approx
ci * T(i, 2 * (x-a)/(b-a) - 1)
for (ci, i) in zip(c, 0:n)

)

22/32

Chebyshev in Practice
m = n + 1

T(n, x) = cos(n * acos(x))
z = [-cos((2k -1)/(2m) * pi) for k = 1:m]
x = (z .+ 1) .* (b - a)/2 .+ a
y = f.(x)

c = map(0:m) do i # Calculate coefs
num = sum(y[k] * T(i, z[k])

for k in 1:m)
den = sum(T(i, z[k])^2

for k in 1:m)
return num/den

end

fh(x) = sum(# evaluate approx
ci * T(i, 2 * (x-a)/(b-a) - 1)
for (ci, i) in zip(c, 0:n)

)

23/32

Chebyshev Interpolation
When to use?

I Chebyshev interpolation works really well if you are sure that your function is defined
everywhere and smooth

I The smoother it is, the better Chebyshev approximation performs (faster convergence)
I Sometimes it has trouble at the boundary

I This can be fixed by using a different set of points xi that include the boundary node
I This is called the expanded Chebyshev array – you can look this up if you need it

I The bigger trouble arises when you have functions that are not bounded: if you have a
utility function that goes to −∞ when c → 0, this can cause serious problems for
Chebyshev polynomials

I Or functions that have kinks (discontinuous derivatives): all of the convergence guarantees
go out the window

23/32

Chebyshev Interpolation
When to use?

I Chebyshev interpolation works really well if you are sure that your function is defined
everywhere and smooth

I The smoother it is, the better Chebyshev approximation performs (faster convergence)
I Sometimes it has trouble at the boundary

I This can be fixed by using a different set of points xi that include the boundary node
I This is called the expanded Chebyshev array – you can look this up if you need it

I The bigger trouble arises when you have functions that are not bounded: if you have a
utility function that goes to −∞ when c → 0, this can cause serious problems for
Chebyshev polynomials

I Or functions that have kinks (discontinuous derivatives): all of the convergence guarantees
go out the window

23/32

Chebyshev Interpolation
When to use?

I Chebyshev interpolation works really well if you are sure that your function is defined
everywhere and smooth

I The smoother it is, the better Chebyshev approximation performs (faster convergence)
I Sometimes it has trouble at the boundary

I This can be fixed by using a different set of points xi that include the boundary node
I This is called the expanded Chebyshev array – you can look this up if you need it

I The bigger trouble arises when you have functions that are not bounded: if you have a
utility function that goes to −∞ when c → 0, this can cause serious problems for
Chebyshev polynomials

I Or functions that have kinks (discontinuous derivatives): all of the convergence guarantees
go out the window

24/32

Section 3

Linear Interpolation and Splines

25/32

Linear Interpolation
I Rather than use a family of polynomials that are

defined everywhere, we can try polynomials that are
more limited in scope

I In particular let’s consider the piecewise linear
functions (functions which look linear on any
subinterval)
I This is literally what you get if you just draw

straight lines between the points on the graph

I Our prototypical piecewise linear function will be the
“hat” function on [x1, x2]

φx1,xm,x2(x) =

x−x1

xm−x1
if x1 ≤ x ≤ xm

1 − x−xm
x2−xm

if xm < x ≤ x2

0 otherwise
I You can think of xm as the point where φ attains its

maximum value 1

26/32

Linear Interpolant
I Suppose we have a function f : [a, b] → R and have the data points {(xi , yi)}n

i=1.
I How do we construct our linear interpolant?
I Let’s add up the appropriate “hat” functions:

I For each i , let φi(x) = φxi−1,xi ,xi+1(x)
I This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any x0 < x1 and xn+1 > xn so that this definition works

I Take a look closely at φi . For all 1 < i < n:
φi(xi−1) = 0 φi(xi) = 1 φi(xi+1) = 0

I Define f̂ (x) :=
∑n

i=1 ciφ
i(x) for some coefficients ci

I Let’s evaluate f̂ at each xj :

f̂ (xj) =
n∑

i=1
ciφ

i(xj)︸ ︷︷ ︸
All 0 when i 6= j

= cjφ
j(xj) = cj (8)

26/32

Linear Interpolant
I Suppose we have a function f : [a, b] → R and have the data points {(xi , yi)}n

i=1.
I How do we construct our linear interpolant?
I Let’s add up the appropriate “hat” functions:

I For each i , let φi(x) = φxi−1,xi ,xi+1(x)
I This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any x0 < x1 and xn+1 > xn so that this definition works

I Take a look closely at φi . For all 1 < i < n:
φi(xi−1) = 0 φi(xi) = 1 φi(xi+1) = 0

I Define f̂ (x) :=
∑n

i=1 ciφ
i(x) for some coefficients ci

I Let’s evaluate f̂ at each xj :

f̂ (xj) =
n∑

i=1
ciφ

i(xj)︸ ︷︷ ︸
All 0 when i 6= j

= cjφ
j(xj) = cj (8)

26/32

Linear Interpolant
I Suppose we have a function f : [a, b] → R and have the data points {(xi , yi)}n

i=1.
I How do we construct our linear interpolant?
I Let’s add up the appropriate “hat” functions:

I For each i , let φi(x) = φxi−1,xi ,xi+1(x)
I This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any x0 < x1 and xn+1 > xn so that this definition works

I Take a look closely at φi . For all 1 < i < n:
φi(xi−1) = 0 φi(xi) = 1 φi(xi+1) = 0

I Define f̂ (x) :=
∑n

i=1 ciφ
i(x) for some coefficients ci

I Let’s evaluate f̂ at each xj :

f̂ (xj) =
n∑

i=1
ciφ

i(xj)︸ ︷︷ ︸
All 0 when i 6= j

= cjφ
j(xj) = cj (8)

26/32

Linear Interpolant
I Suppose we have a function f : [a, b] → R and have the data points {(xi , yi)}n

i=1.
I How do we construct our linear interpolant?
I Let’s add up the appropriate “hat” functions:

I For each i , let φi(x) = φxi−1,xi ,xi+1(x)
I This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any x0 < x1 and xn+1 > xn so that this definition works

I Take a look closely at φi . For all 1 < i < n:
φi(xi−1) = 0 φi(xi) = 1 φi(xi+1) = 0

I Define f̂ (x) :=
∑n

i=1 ciφ
i(x) for some coefficients ci

I Let’s evaluate f̂ at each xj :

f̂ (xj) =
n∑

i=1
ciφ

i(xj)︸ ︷︷ ︸
All 0 when i 6= j

= cjφ
j(xj) = cj (8)

26/32

Linear Interpolant
I Suppose we have a function f : [a, b] → R and have the data points {(xi , yi)}n

i=1.
I How do we construct our linear interpolant?
I Let’s add up the appropriate “hat” functions:

I For each i , let φi(x) = φxi−1,xi ,xi+1(x)
I This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any x0 < x1 and xn+1 > xn so that this definition works

I Take a look closely at φi . For all 1 < i < n:
φi(xi−1) = 0 φi(xi) = 1 φi(xi+1) = 0

I Define f̂ (x) :=
∑n

i=1 ciφ
i(x) for some coefficients ci

I Let’s evaluate f̂ at each xj :

f̂ (xj) =
n∑

i=1
ciφ

i(xj)︸ ︷︷ ︸
All 0 when i 6= j

= cjφ
j(xj) = cj (8)

27/32

Linear Interpolation Solves a Linear System

I Let’s impose our interpolation conditions
I We want f̂ (xi) = f (xi) = yi for all i
I That means eq. (8) implies

yi = f̂ (xi) = ci for all i (9)

I This is a (really simple) system of linear equations:
1

1
1

. . .
1

c1
c2
c3
...

cn

 =

y1
y2
y3
...

yn

 (10)

I It’s almost trivial, but we’re going to come back to this when we discuss splines

28/32

Linear Interpolation
When to use it?

I Linear interpolation is a great fallback if you have a badly behaved function
I E.g., kinks, poles, etc...

I It’s simple and easy to implement: it’s basically our mental model anyway

I You’ll never be confused about why it’s doing what it’s doing

I Downsides:
I Slow convergence – you often need way more grid points to get a good approximation
I Not differentiable at the data points – sometimes an optimizer will get stuck on a kink and

you will get a poor solution

28/32

Linear Interpolation
When to use it?

I Linear interpolation is a great fallback if you have a badly behaved function
I E.g., kinks, poles, etc...

I It’s simple and easy to implement: it’s basically our mental model anyway

I You’ll never be confused about why it’s doing what it’s doing

I Downsides:
I Slow convergence – you often need way more grid points to get a good approximation
I Not differentiable at the data points – sometimes an optimizer will get stuck on a kink and

you will get a poor solution

29/32

Piecewise Cubic Approximation: Cubic Splines
I With piecewise linear functions, the problem is that they’re not smooth enough
I What if we tried the same approach, but with a cubic polynomial on each sub-interval?
I Suppose for every interval [xi−1, xi] we want our approximation to be a cubic polynomial:

f̂ (x) = ai + bix + cix2 + dix3 for x ∈ [xi−1, xi], and for all i

I We have several conditions we want:
Interpolation: yi = ai + bixi + cix2

i + dix3
i (11)

for i = 1, . . . , n
Continuity: yi = ai+1 + bi+1xi + ci+1x2

i + di+1x3
i (12)

for i = 0, . . . , n − 1

Continuous f̂ ′ : bi + 2cixi + 3dix2
i = bi+1 + 2ci+1xi + 3di+1x2

i (13)
for i = 1, . . . , n − 1

Continuous f̂ ′′ : 2ci + 6dixi = 2ci+1 + 6di+1xi (14)
for i = 1, . . . , n − 1

29/32

Piecewise Cubic Approximation: Cubic Splines
I With piecewise linear functions, the problem is that they’re not smooth enough
I What if we tried the same approach, but with a cubic polynomial on each sub-interval?
I Suppose for every interval [xi−1, xi] we want our approximation to be a cubic polynomial:

f̂ (x) = ai + bix + cix2 + dix3 for x ∈ [xi−1, xi], and for all i

I We have several conditions we want:
Interpolation: yi = ai + bixi + cix2

i + dix3
i (11)

for i = 1, . . . , n
Continuity: yi = ai+1 + bi+1xi + ci+1x2

i + di+1x3
i (12)

for i = 0, . . . , n − 1

Continuous f̂ ′ : bi + 2cixi + 3dix2
i = bi+1 + 2ci+1xi + 3di+1x2

i (13)
for i = 1, . . . , n − 1

Continuous f̂ ′′ : 2ci + 6dixi = 2ci+1 + 6di+1xi (14)
for i = 1, . . . , n − 1

29/32

Piecewise Cubic Approximation: Cubic Splines
I With piecewise linear functions, the problem is that they’re not smooth enough
I What if we tried the same approach, but with a cubic polynomial on each sub-interval?
I Suppose for every interval [xi−1, xi] we want our approximation to be a cubic polynomial:

f̂ (x) = ai + bix + cix2 + dix3 for x ∈ [xi−1, xi], and for all i

I We have several conditions we want:
Interpolation: yi = ai + bixi + cix2

i + dix3
i (11)

for i = 1, . . . , n
Continuity: yi = ai+1 + bi+1xi + ci+1x2

i + di+1x3
i (12)

for i = 0, . . . , n − 1

Continuous f̂ ′ : bi + 2cixi + 3dix2
i = bi+1 + 2ci+1xi + 3di+1x2

i (13)
for i = 1, . . . , n − 1

Continuous f̂ ′′ : 2ci + 6dixi = 2ci+1 + 6di+1xi (14)
for i = 1, . . . , n − 1

29/32

Piecewise Cubic Approximation: Cubic Splines
I With piecewise linear functions, the problem is that they’re not smooth enough
I What if we tried the same approach, but with a cubic polynomial on each sub-interval?
I Suppose for every interval [xi−1, xi] we want our approximation to be a cubic polynomial:

f̂ (x) = ai + bix + cix2 + dix3 for x ∈ [xi−1, xi], and for all i

I We have several conditions we want:
Interpolation: yi = ai + bixi + cix2

i + dix3
i (11)

for i = 1, . . . , n
Continuity: yi = ai+1 + bi+1xi + ci+1x2

i + di+1x3
i (12)

for i = 0, . . . , n − 1

Continuous f̂ ′ : bi + 2cixi + 3dix2
i = bi+1 + 2ci+1xi + 3di+1x2

i (13)
for i = 1, . . . , n − 1

Continuous f̂ ′′ : 2ci + 6dixi = 2ci+1 + 6di+1xi (14)
for i = 1, . . . , n − 1

29/32

Piecewise Cubic Approximation: Cubic Splines
I With piecewise linear functions, the problem is that they’re not smooth enough
I What if we tried the same approach, but with a cubic polynomial on each sub-interval?
I Suppose for every interval [xi−1, xi] we want our approximation to be a cubic polynomial:

f̂ (x) = ai + bix + cix2 + dix3 for x ∈ [xi−1, xi], and for all i

I We have several conditions we want:
Interpolation: yi = ai + bixi + cix2

i + dix3
i (11)

for i = 1, . . . , n
Continuity: yi = ai+1 + bi+1xi + ci+1x2

i + di+1x3
i (12)

for i = 0, . . . , n − 1

Continuous f̂ ′ : bi + 2cixi + 3dix2
i = bi+1 + 2ci+1xi + 3di+1x2

i (13)
for i = 1, . . . , n − 1

Continuous f̂ ′′ : 2ci + 6dixi = 2ci+1 + 6di+1xi (14)
for i = 1, . . . , n − 1

29/32

Piecewise Cubic Approximation: Cubic Splines
I With piecewise linear functions, the problem is that they’re not smooth enough
I What if we tried the same approach, but with a cubic polynomial on each sub-interval?
I Suppose for every interval [xi−1, xi] we want our approximation to be a cubic polynomial:

f̂ (x) = ai + bix + cix2 + dix3 for x ∈ [xi−1, xi], and for all i

I We have several conditions we want:
Interpolation: yi = ai + bixi + cix2

i + dix3
i (11)

for i = 1, . . . , n
Continuity: yi = ai+1 + bi+1xi + ci+1x2

i + di+1x3
i (12)

for i = 0, . . . , n − 1

Continuous f̂ ′ : bi + 2cixi + 3dix2
i = bi+1 + 2ci+1xi + 3di+1x2

i (13)
for i = 1, . . . , n − 1

Continuous f̂ ′′ : 2ci + 6dixi = 2ci+1 + 6di+1xi (14)
for i = 1, . . . , n − 1

30/32

Cubic splines solve a linear system

I So far this is all one big linear system of equations!
I We know how to solve linear systems
I Stack the conditions up in a matrix, and have the computer solve it

I We have 4n variables and 4n − 2 equations
I Why did we lose two equations? Check back on the previous slide

I Continuity of the derivatives is only imposed in the interior.
I Need to make some assumptions about the derivatives of our approximation at the edges of

our domain
I These are called boundary conditions

30/32

Cubic splines solve a linear system

I So far this is all one big linear system of equations!
I We know how to solve linear systems
I Stack the conditions up in a matrix, and have the computer solve it

I We have 4n variables and 4n − 2 equations
I Why did we lose two equations? Check back on the previous slide

I Continuity of the derivatives is only imposed in the interior.
I Need to make some assumptions about the derivatives of our approximation at the edges of

our domain
I These are called boundary conditions

30/32

Cubic splines solve a linear system

I So far this is all one big linear system of equations!
I We know how to solve linear systems
I Stack the conditions up in a matrix, and have the computer solve it

I We have 4n variables and 4n − 2 equations
I Why did we lose two equations? Check back on the previous slide

I Continuity of the derivatives is only imposed in the interior.
I Need to make some assumptions about the derivatives of our approximation at the edges of

our domain
I These are called boundary conditions

31/32

Spline Boundary Conditions

I There are three main options:

I Natural spline: f̂ ′(x0) = 0 = f̂ ′(xn)

I Hermite Spline: f̂ ′(x0) = y ′
0 and f̂ ′(xn) = y ′

n

Assumes you know the true derivatives at the boundary

I Secant spline: f̂ ′(x0) =
f̂ (x1)−f̂ (x0)

x1−x0
and a similar condition for f̂ ′(xn)

Assumes a linear approximation of the derivative at the lower and upper bounds

I Which you choose depends on the specifics of the problem
I Often the natural spline is not a good fit if you know your function is strictly concave (like a

utility function)

32/32

How to actually use splines?

I Unless you’re explicitly asked, don’t code these up yourself
I Extremely efficient implementations (for splines and linear interpolation) are available in

Interpolations.jl

I There are also some other fun things you can try:
I Shape preserving splines: these splines add extra conditions to ensure that the approximation

will never have a curvature that does not match the input data
I I.e, if your data is sampled from a strictly concave function, the resulting spline will also be

strictly concave

I Crucially, all of these methods generalize quite nicely to multiple dimensions:
I In Interpolations.jl it’s the same functions for multidimensional splines

32/32

How to actually use splines?

I Unless you’re explicitly asked, don’t code these up yourself
I Extremely efficient implementations (for splines and linear interpolation) are available in

Interpolations.jl

I There are also some other fun things you can try:
I Shape preserving splines: these splines add extra conditions to ensure that the approximation

will never have a curvature that does not match the input data
I I.e, if your data is sampled from a strictly concave function, the resulting spline will also be

strictly concave

I Crucially, all of these methods generalize quite nicely to multiple dimensions:
I In Interpolations.jl it’s the same functions for multidimensional splines

32/32

How to actually use splines?

I Unless you’re explicitly asked, don’t code these up yourself
I Extremely efficient implementations (for splines and linear interpolation) are available in

Interpolations.jl

I There are also some other fun things you can try:
I Shape preserving splines: these splines add extra conditions to ensure that the approximation

will never have a curvature that does not match the input data
I I.e, if your data is sampled from a strictly concave function, the resulting spline will also be

strictly concave

I Crucially, all of these methods generalize quite nicely to multiple dimensions:
I In Interpolations.jl it’s the same functions for multidimensional splines

32/32

How to actually use splines?

I Unless you’re explicitly asked, don’t code these up yourself
I Extremely efficient implementations (for splines and linear interpolation) are available in

Interpolations.jl

I There are also some other fun things you can try:
I Shape preserving splines: these splines add extra conditions to ensure that the approximation

will never have a curvature that does not match the input data
I I.e, if your data is sampled from a strictly concave function, the resulting spline will also be

strictly concave

I Crucially, all of these methods generalize quite nicely to multiple dimensions:
I In Interpolations.jl it’s the same functions for multidimensional splines

1/3

Section 4

Optional Content

2/3

Lagrange Interpolant is Unique

Theorem 1
Suppose we have data {(xi , yi) | i = 1, . . . , n} where the xi are all unique. There is a unique
polynomial of degree n − 1 that interpolates these values.

Proof.
I Since the Vandermonde matrix V has full rank, we know that a solution p(x) exists
I Suppose that p̂(x) is a polynomial of degree at most n − 1 which also interpolates these

points.
I We know that since p̂ interpolates our data, p̂(xi) = p(xi) = yi for all i .
I This means that g(x) = p(x)− p̂(x) is a polynomial of degree at most n − 1 which has n

distinct zeros (all of the data points).
I The only such polynomial is the zero polynomial, which implies that p = p̂
Back

3/3

Chebyshev Approximation Theorem
Theorem 2
Assume that f : [−1, 1] → R has continuous kth derivatives. If

cj ≡
2
π

∫ 1

−1

f (x)Tj(x)√
1 − x2

dx

and

Cn(x) ≡
1
2c0 +

n∑
j=1

cjTj(x)

Then there is a B < ∞ such that for all n ≥ 2:

‖f − Cn‖∞ ≤ B log n
nk

I This means that for smooth enough functions, our Chebyshev approximation will converge
uniformly (and rapidly) to the true function

I Note that ‖f ‖∞ := maxx |f (x)|
Back

	Distance, Functions, and the Generalized Dot Product
	Interpolation with Global Polynomials
	Linear Interpolation and Splines
	Appendix
	Optional Content

