Lecture 7: Function Approximation

Jacob Adenbaum

University of Edinburgh

Spring 2023

Where we're going

The Neoclassical Growth Model

Suppose we want to solve the problem:

$$V(k,z) = \max_{c,k',n} \quad u(c,n) + \beta \mathbb{E} \left[V(k',z') \mid z \right]$$

s.t.
$$c + k' = zF(k,n) \quad \text{Resource Constraint} \\ \log(z') = \rho \log(z) + \epsilon \quad \log(z) \text{ is an } AR(1) \\ \epsilon \sim N(0,\sigma) \quad \text{Shocks to } z \text{ are log-normal}$$
(1)

where

- ▶ c is consumption
- \blacktriangleright k is capital, and r is the rental price of capital
- n is labor supply, and w is the wage
- ► F is a constant returns to scale production function
- $\blacktriangleright~\beta\text{,}~\rho$ and σ are paramters

If we can't get a solution by hand, then what does "solve this problem" even mean?

Where we're going

The Neoclassical Growth Model

Suppose we want to solve the problem:

$$V(k,z) = \max_{c,k',n} \quad u(c,n) + \beta \mathbb{E} \left[V(k',z') \mid z \right]$$

s.t.
$$c + k' = zF(k,n) \quad \text{Resource Constraint} \\ \log(z') = \rho \log(z) + \epsilon \quad \log(z) \text{ is an } AR(1) \\ \epsilon \sim N(0,\sigma) \quad \text{Shocks to } z \text{ are log-normal}$$
(1)

where

- ▶ c is consumption
- \blacktriangleright k is capital, and r is the rental price of capital
- n is labor supply, and w is the wage
- ► F is a constant returns to scale production function
- \blacktriangleright β , ρ and σ are paramters
- If we can't get a solution by hand, then what does "solve this problem" even mean?

What is a "solution" in quantitative economics?

$$V(k, z) = \max_{c, k', n} \quad u(c, n) + \beta \mathbb{E} \left[V(k', z') \mid z \right]$$

s.t.
$$c + k' = zF(k, n) \quad \text{Resource Constraint} \quad (1)$$
$$\log(z') = \rho \log(z) + \epsilon \quad \log(z) \text{ is an } AR(1)$$
$$\epsilon \sim N(0, \sigma) \quad \text{Shocks to } z \text{ are log-normal}$$

- We will see next week that there is a unique function $V : \mathbb{R}^2 \to \mathbb{R}$ that satisfies eq. (1)
- > In general, however, we cannot get an exact formula for V (a "closed-form solution")
- We have to settle for finding an approximation of V: call it \widehat{V}
 - As long as the solution to eq. (1) is unique, if we find an approximation \hat{V} that also satisfies it, then we can call it a day
 - It turns out that if we repeatedly solve the maximization problem above, starting from an initial guess and updating \hat{V} each iteration, we can be sure that we will converge to the true solution
 - This process, called value function iteration is what we will be learning about next week

This week: Function Approximation

- \blacktriangleright This week, we will be focusing on different methods to approximate V with some other function \widehat{V}
- ► The key questions we'll be answering:
 - 1. What does it mean to say that \widehat{V} is "close" to V (i.e, that it approximates it well)
 - 2. What kinds of approximations work well in practice?
 - 3. How do we represent these approximations on a computer?
 - 4. How can we calculate them efficiently?

Section 1

Distance, Functions, and the Generalized Dot Product

How do we measure distance in \mathbb{R}^n ?

- Suppose I have two points in \mathbb{R}^n : x and y
- ▶ How do I measure how far apart they are?
- Pythagorean theorem says: draw the corresponding right triangle, and use

 $a^2 + b^2 = c^2$

In this case

$$c^{2} = (y_{1} - x_{1})^{2} + (y_{2} - x_{2})^{2}$$

This happens to correspond nicely with the norm of the difference between these two points:

$$c^{2} = ||y - x||^{2} = (y - x) \cdot (y - x)$$

Recall that $||x||^2 := x \cdot x = \sum_{i=1}^n x_i^2$

How do we measure distance in \mathbb{R}^n ?

- Suppose I have two points in \mathbb{R}^n : x and y
- How do I measure how far apart they are?
- Pythagorean theorem says: draw the corresponding right triangle, and use

$$a^2 + b^2 = c^2$$

In this case

$$c^{2} = (y_{1} - x_{1})^{2} + (y_{2} - x_{2})^{2}$$

This happens to correspond nicely with the norm of the difference between these two points:

$$c^{2} = ||y - x||^{2} = (y - x) \cdot (y - x)$$

Recall that $||x||^2 := x \cdot x = \sum_{i=1}^n x_i^2$

How do we measure distance in \mathbb{R}^n ?

- Suppose I have two points in \mathbb{R}^n : x and y
- How do I measure how far apart they are?
- Pythagorean theorem says: draw the corresponding right triangle, and use

$$a^2 + b^2 = c^2$$

In this case

$$c^2 = (y_1 - x_1)^2 + (y_2 - x_2)^2$$

This happens to correspond nicely with the norm of the difference between these two points:

$$c^{2} = ||y - x||^{2} = (y - x) \cdot (y - x)$$

Recall that $||x||^2 := x \cdot x = \sum_{i=1}^n x_i^2$

We've already seen the dot product show up:

$$x \cdot y := \sum_{i=1}^n x_i y_i$$

It has this natural connection to our notion of distance:

$$||y - x||^2 = \sum_{i=1}^{n} (y_i - x_i)^2 = (y - x) \cdot (y - x)$$

It is integral to what matrix multiplication looks like:

$$\begin{bmatrix} - & a_1 & - \\ - & a_2 & - \\ & \vdots & \\ - & a_n & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \dots & b_k \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} a_1 \cdot b_1 & a_1 \cdot b_2 & \dots & a_1 \cdot b_k \\ a_2 \cdot b_1 & a_2 \cdot b_2 & \dots & a_2 \cdot b_k \\ \vdots & \vdots & \ddots & \vdots \\ a_n \cdot b_1 & a_n \cdot b_2 & \dots & a_n \cdot b_k \end{bmatrix}$$

We've already seen the dot product show up:

$$x \cdot y := \sum_{i=1}^n x_i y_i$$

It has this natural connection to our notion of distance:

$$||y - x||^2 = \sum_{i=1}^{n} (y_i - x_i)^2 = (y - x) \cdot (y - x)$$

▶ It is integral to what matrix multiplication looks like:

$$\begin{bmatrix} - & a_1 & - \\ - & a_2 & - \\ & \vdots & \\ - & a_n & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \dots & b_k \\ | & | & - & | \end{bmatrix} = \begin{bmatrix} a_1 \cdot b_1 & a_1 \cdot b_2 & \dots & a_1 \cdot b_k \\ a_2 \cdot b_1 & a_2 \cdot b_2 & \dots & a_2 \cdot b_k \\ \vdots & \vdots & \ddots & \vdots \\ a_n \cdot b_1 & a_n \cdot b_2 & \dots & a_n \cdot b_k \end{bmatrix}$$

We've already seen the dot product show up:

$$x \cdot y := \sum_{i=1}^n x_i y_i$$

It has this natural connection to our notion of distance:

$$||y - x||^2 = \sum_{i=1}^{n} (y_i - x_i)^2 = (y - x) \cdot (y - x)$$

It is integral to what matrix multiplication looks like:

$$\begin{bmatrix} - & a_1 & - \\ - & a_2 & - \\ & \vdots & \\ - & a_n & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \dots & b_k \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} a_1 \cdot b_1 & a_1 \cdot b_2 & \dots & a_1 \cdot b_k \\ a_2 \cdot b_1 & a_2 \cdot b_2 & \dots & a_2 \cdot b_k \\ \vdots & \vdots & \ddots & \vdots \\ a_n \cdot b_1 & a_n \cdot b_2 & \dots & a_n \cdot b_k \end{bmatrix}$$

We've already seen the dot product show up:

$$x \cdot y := \sum_{i=1}^n x_i y_i$$

It has this natural connection to our notion of distance:

$$||y - x||^2 = \sum_{i=1}^{n} (y_i - x_i)^2 = (y - x) \cdot (y - x)$$

It is integral to what matrix multiplication looks like:

$$\begin{bmatrix} - & a_1 & - \\ - & a_2 & - \\ & \vdots & \\ - & a_n & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \dots & b_k \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} a_1 \cdot b_1 & a_1 \cdot b_2 & \dots & a_1 \cdot b_k \\ a_2 \cdot b_1 & a_2 \cdot b_2 & \dots & a_2 \cdot b_k \\ \vdots & \vdots & \ddots & \vdots \\ a_n \cdot b_1 & a_n \cdot b_2 & \dots & a_n \cdot b_k \end{bmatrix}$$

Suppose we have two vectors x and y that lie on the unit circle (||x|| = ||y|| = 1)

We know that both vectors are defined (in polar coordinates) by their angles:

 $x = (\cos \theta_x, \sin \theta_x)$ $y = (\cos \theta_y, \sin \theta_y)$

Recall the cosine subtraction formula:

 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \qquad (2)$

That means that the dot product is just:

 $\begin{aligned} x \cdot y &= \cos \theta_x \cos \theta_y + \sin \theta_x \sin \theta_y & \text{Def of dot product} \\ &= \cos(\theta_y - \theta_x) & \text{By eq. (2)} \end{aligned}$

This generalizes to when x and y are not on the unit circle, as well as to \mathbb{R}^n . In the general case:

- Suppose we have two vectors x and y that lie on the unit circle (||x|| = ||y|| = 1)
- We know that both vectors are defined (in polar coordinates) by their angles:

$$x = (\cos \theta_x, \sin \theta_x)$$
 $y = (\cos \theta_y, \sin \theta_y)$

Recall the cosine subtraction formula:

 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \qquad ($

That means that the dot product is just:

- $x \cdot y = \cos \theta_x \cos \theta_y + \sin \theta_x \sin \theta_y \quad \text{Def of dot product}$ $= \cos(\theta_y \theta_x) \qquad \qquad \text{By eq. (2)}$
- So we know that x · y = 0 if and only if the cosine of the angle between them is zero. (I.e, the vectors are orthogonal)

This generalizes to when x and y are not on the unit circle, as well as to \mathbb{R}^n . In the general case:

- Suppose we have two vectors x and y that lie on the unit circle (||x|| = ||y|| = 1)
- We know that both vectors are defined (in polar coordinates) by their angles:

$$x = (\cos \theta_x, \sin \theta_x)$$
 $y = (\cos \theta_y, \sin \theta_y)$

Recall the cosine subtraction formula:

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \qquad (2)$$

- That means that the dot product is just:
 - $\begin{aligned} x \cdot y &= \cos \theta_x \cos \theta_y + \sin \theta_x \sin \theta_y & \text{Def of dot product} \\ &= \cos(\theta_y \theta_x) & \text{By eq. (2)} \end{aligned}$

This generalizes to when x and y are not on the unit circle, as well as to \mathbb{R}^n . In the general case:

- Suppose we have two vectors x and y that lie on the unit circle (||x|| = ||y|| = 1)
- We know that both vectors are defined (in polar coordinates) by their angles:

$$x = (\cos \theta_x, \sin \theta_x)$$
 $y = (\cos \theta_y, \sin \theta_y)$

Recall the cosine subtraction formula:

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \qquad (2)$$

That means that the dot product is just:

 $\begin{aligned} x \cdot y &= \cos \theta_x \cos \theta_y + \sin \theta_x \sin \theta_y & \text{Def of dot product} \\ &= \cos(\theta_y - \theta_x) & \text{By eq. (2)} \end{aligned}$

This generalizes to when x and y are not on the unit circle, as well as to \mathbb{R}^n . In the general case:

- Suppose we have two vectors x and y that lie on the unit circle (||x|| = ||y|| = 1)
- We know that both vectors are defined (in polar coordinates) by their angles:

$$x = (\cos \theta_x, \sin \theta_x)$$
 $y = (\cos \theta_y, \sin \theta_y)$

Recall the cosine subtraction formula:

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \qquad (2)$$

That means that the dot product is just:

 $\begin{aligned} x \cdot y &= \cos \theta_x \cos \theta_y + \sin \theta_x \sin \theta_y & \text{Def of dot product} \\ &= \cos(\theta_y - \theta_x) & \text{By eq. (2)} \end{aligned}$

This generalizes to when x and y are not on the unit circle, as well as to \mathbb{R}^n . In the general case:

- Suppose we have two vectors x and y that lie on the unit circle (||x|| = ||y|| = 1)
- We know that both vectors are defined (in polar coordinates) by their angles:

$$x = (\cos \theta_x, \sin \theta_x)$$
 $y = (\cos \theta_y, \sin \theta_y)$

Recall the cosine subtraction formula:

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \qquad (2)$$

That means that the dot product is just:

 $\begin{aligned} x \cdot y &= \cos \theta_x \cos \theta_y + \sin \theta_x \sin \theta_y & \text{Def of dot product} \\ &= \cos(\theta_y - \theta_x) & \text{By eq. (2)} \end{aligned}$

This generalizes to when x and y are not on the unit circle, as well as to \mathbb{R}^n . In the general case:

$$x \cdot y = ||x|| \times ||y|| \times \cos \theta$$

- If we don't have an explicit formula, we can try encoding the function values on a grid of points
- Let f(x) = sin(x), and consider a grid with n + 1 points:

$$X_n = \left\{ \frac{2\pi i}{n} \mid i = 0, 1, \dots, n \right\}$$

► For every point *x_i*, we save a corresponding

$$\widehat{f}_i^n = \sin\left(\frac{2\pi i}{n}\right)$$

- Maybe we imagine that if we're off grid, we will interpolate linearly (we'll talk about this later)
- We hope that if n gets large, this is going to be good enough...

We're going to do something more

sophisticated later

- If we don't have an explicit formula, we can try encoding the function values on a grid of points
- Let f(x) = sin(x), and consider a grid with n + 1 points:

$$X_n = \left\{ \frac{2\pi i}{n} \mid i = 0, 1, \dots, n \right\}$$

For every point x_i , we save a corresponding

$$\widehat{f}_i^n = \sin\left(\frac{2\pi i}{n}\right)$$

- Maybe we imagine that if we're off grid, we will interpolate linearly (we'll talk about this later)
- We hope that if n gets large, this is going to be good enough...

- If we don't have an explicit formula, we can try encoding the function values on a grid of points
- Let f(x) = sin(x), and consider a grid with n + 1 points:

$$X_n = \left\{ \frac{2\pi i}{n} \mid i = 0, 1, \dots, n \right\}$$

For every point x_i , we save a corresponding

$$\widehat{f}_i^n = \sin\left(\frac{2\pi i}{n}\right)$$

- Maybe we imagine that if we're off grid, we will interpolate linearly (we'll talk about this later)
- We hope that if n gets large, this is going to be good enough...

- If we don't have an explicit formula, we can try encoding the function values on a grid of points
- Let f(x) = sin(x), and consider a grid with n + 1 points:

$$X_n = \left\{ \frac{2\pi i}{n} \mid i = 0, 1, \dots, n \right\}$$

For every point x_i , we save a corresponding

$$\widehat{f}_i^n = \sin\left(\frac{2\pi i}{n}\right)$$

- Maybe we imagine that if we're off grid, we will interpolate linearly (we'll talk about this later)
- We hope that if n gets large, this is going to be good enough...

- If we don't have an explicit formula, we can try encoding the function values on a grid of points
- Let f(x) = sin(x), and consider a grid with n + 1 points:

$$X_n = \left\{ \frac{2\pi i}{n} \mid i = 0, 1, \dots, n \right\}$$

For every point x_i , we save a corresponding

$$\widehat{f}_i^n = \sin\left(\frac{2\pi i}{n}\right)$$

- Maybe we imagine that if we're off grid, we will interpolate linearly (we'll talk about this later)
- We hope that if n gets large, this is going to be good enough...

- If we don't have an explicit formula, we can try encoding the function values on a grid of points
- Let f(x) = sin(x), and consider a grid with n + 1 points:

$$X_n = \left\{ \frac{2\pi i}{n} \mid i = 0, 1, \dots, n \right\}$$

For every point x_i , we save a corresponding

$$\widehat{f}_i^n = \sin\left(\frac{2\pi i}{n}\right)$$

- Maybe we imagine that if we're off grid, we will interpolate linearly (we'll talk about this later)
- We hope that if n gets large, this is going to be good enough...

- If we don't have an explicit formula, we can try encoding the function values on a grid of points
- Let f(x) = sin(x), and consider a grid with n + 1 points:

$$X_n = \left\{ \frac{2\pi i}{n} \mid i = 0, 1, \dots, n \right\}$$

For every point x_i , we save a corresponding

$$\widehat{f}_i^n = \sin\left(\frac{2\pi i}{n}\right)$$

- Maybe we imagine that if we're off grid, we will interpolate linearly (we'll talk about this later)
- We hope that if n gets large, this is going to be good enough...

Consider a function f on [0,1], and think about f as the vector $\widehat{f}^n \in \mathbb{R}^{n+1}$ with

$$X_n = \left\{ \frac{i}{n} \mid i = 0, \dots, n \right\}$$

► Let's try a definition of ||*f*||:

$$\|f\|^2 := \lim_{n \to \infty} \frac{1}{n} \|\widehat{f}^n\|$$
(3)

We have to divide by n because we're increasing the number of dimensions we're summing over.

• Define
$$\Delta x_n = \frac{1}{n}$$
. We can write this as:

$$\|f\|^{2} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \left(\widehat{f}_{i}^{n}\right)^{2} = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i})^{2} \Delta x_{n} = \int_{0}^{1} f(x)^{2} dx$$
A Riemann Sum

Consider a function f on [0,1], and think about f as the vector $\widehat{f}^n \in \mathbb{R}^{n+1}$ with

$$X_n = \left\{ \frac{i}{n} \mid i = 0, \dots, n \right\}$$

► Let's try a definition of ||*f*||:

$$\|f\|^2 := \lim_{n \to \infty} \frac{1}{n} \|\widehat{f}^n\|$$
(3)

We have to divide by n because we're increasing the number of dimensions we're summing over.

• Define $\Delta x_n = \frac{1}{n}$. We can write this as:

$$\|f\|^{2} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \left(\widehat{f}_{i}^{n}\right)^{2} = \lim_{\substack{n \to \infty \\ i=0}} \sum_{i=0}^{n} f(x_{i})^{2} \Delta x_{n} = \int_{0}^{1} f(x)^{2} dx$$
A Riemann Sum

Consider a function f on [0,1], and think about f as the vector $\widehat{f}^n \in \mathbb{R}^{n+1}$ with

$$X_n = \left\{ \frac{i}{n} \mid i = 0, \dots, n \right\}$$

► Let's try a definition of ||*f*||:

$$\|f\|^2 := \lim_{n \to \infty} \frac{1}{n} \|\widehat{f}^n\|$$
(3)

We have to divide by n because we're increasing the number of dimensions we're summing over.

• Define $\Delta x_n = \frac{1}{n}$. We can write this as:

$$\|f\|^{2} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \left(\widehat{f}_{i}^{n}\right)^{2} = \underbrace{\lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i})^{2} \Delta x_{n}}_{\text{A Riemann Sum}} = \int_{0}^{1} f(x)^{2} dx$$

Consider a function f on [0,1], and think about f as the vector $\widehat{f}^n \in \mathbb{R}^{n+1}$ with

$$X_n = \left\{ \frac{i}{n} \mid i = 0, \dots, n \right\}$$

► Let's try a definition of ||*f*||:

$$\|f\|^2 := \lim_{n \to \infty} \frac{1}{n} \|\widehat{f}^n\|$$
(3)

We have to divide by n because we're increasing the number of dimensions we're summing over.

• Define $\Delta x_n = \frac{1}{n}$. We can write this as:

$$||f||^{2} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \left(\widehat{f}_{i}^{n}\right)^{2} = \underbrace{\lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i})^{2} \Delta x_{n}}_{\text{A Riemann Sum}} = \int_{0}^{1} f(x)^{2} dx$$

Distance between functions

We can now define the distance between functions:

$$||f - g||^2 = \int_0^1 (f(x) - g(x))^2 dx$$

- Suppose we have a function $f : [0,1] \to \mathbb{R}$, and a proposed approximation $\widehat{f} : [0,1] \to \mathbb{R}$.
- ► Question: How should we judge how "good" and approximation f is?
- Answer: Look at

$$\|f - \widehat{f}\|^2 = \int_0^1 \left(f(x) - \widehat{f}(x)\right)^2 dx$$

Distance between functions

We can now define the distance between functions:

$$||f - g||^2 = \int_0^1 (f(x) - g(x))^2 dx$$

- Suppose we have a function f : [0,1] → ℝ, and a proposed approximation f̂ : [0,1] → ℝ.
- Question: How should we judge how "good" and approximation f is?
- Answer: Look at

$$\|f - \widehat{f}\|^2 = \int_0^1 \left(f(x) - \widehat{f}(x)\right)^2 dx$$

Distance between functions

We can now define the distance between functions:

$$||f - g||^2 = \int_0^1 (f(x) - g(x))^2 dx$$

- Suppose we have a function f : [0,1] → ℝ, and a proposed approximation f̂ : [0,1] → ℝ.
- Question: How should we judge how "good" and approximation f is?
- Answer: Look at

$$\|f-\widehat{f}\|^2 = \int_0^1 \left(f(x)-\widehat{f}(x)\right)^2 dx$$

Can functions be orthogonal?

Not examinable

We can define something like a "dot product" for functions:

$$\langle f,g\rangle := \int_0^1 f(x)g(x)dx$$

- This is called an inner product
- Just like with the dot product

$$\langle f, f \rangle = ||f||^2 = \int_0^1 f(x)^2 dx$$

Even more importantly, if (f,g) = 0, that means we can meaningfully say that these function are orthogonal

Notice that in this case, f(x)g(x) = 0 since one of the two functions is always zero. That means

$$\langle f,g\rangle = 0$$

and so f and g are orthogonal

Section 2

Interpolation with Global Polynomials

Interpolating a function

- Let $f : [0,1] \to \mathbb{R}$ be a continuous function
 - Suppose you've already been given a grid $X = \{x_i\}_{i=1}^n$ and the evaluated $y = \{y_i\}_{i=1}^n$ where $y_i = f(x_i)$
 - It's easy to approximate f on grid we already calculated its values but we want to be able to approximate f off of the grid without evaluating f any more times
- Let's look for a polynomial $p(x) = \sum_{s=0}^{n-1} a_s x^s$ that approximates the function well.

Notice that I've chosen a polynomial with as many coefficients as we have data points. If we want to fit our data exactly, we will need as many degrees of freedom as we have observations.

- It should:
 - 1. Fit our function exactly on the grid of x_i
 - 2. Approximate *f* well off-grid

i.e, ||f - p|| should be small, and ideally should approach zero as n increases

This is called an interpolation problem
Interpolating a function

- Let $f:[0,1] \to \mathbb{R}$ be a continuous function
 - Suppose you've already been given a grid $X = \{x_i\}_{i=1}^n$ and the evaluated $y = \{y_i\}_{i=1}^n$ where $y_i = f(x_i)$
 - It's easy to approximate f on grid we already calculated its values but we want to be able to approximate f off of the grid without evaluating f any more times
- Let's look for a polynomial $p(x) = \sum_{s=0}^{n-1} a_s x^s$ that approximates the function well.

Notice that I've chosen a polynomial with as many coefficients as we have data points. If we want to fit our data exactly, we will need as many degrees of freedom as we have observations.

- It should:
 - 1. Fit our function exactly on the grid of x_i
 - 2. Approximate f well off-grid

i.e, ||f - p|| should be small, and ideally should approach zero as n increases

This is called an interpolation problem

Interpolating a function

- Let $f : [0,1] \to \mathbb{R}$ be a continuous function
 - Suppose you've already been given a grid $X = \{x_i\}_{i=1}^n$ and the evaluated $y = \{y_i\}_{i=1}^n$ where $y_i = f(x_i)$
 - It's easy to approximate f on grid we already calculated its values but we want to be able to approximate f off of the grid without evaluating f any more times
- Let's look for a polynomial $p(x) = \sum_{s=0}^{n-1} a_s x^s$ that approximates the function well.

Notice that I've chosen a polynomial with as many coefficients as we have data points. If we want to fit our data exactly, we will need as many degrees of freedom as we have observations.

It should:

- 1. Fit our function exactly on the grid of x_i
- 2. Approximate f well off-grid

i.e, ||f - p|| should be small, and ideally should approach zero as n increases

This is called an interpolation problem

The Vandermonde Matrix

If we want
$$p(x_i) = y_i$$
 for all i , then that implies:

$$a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_{n-1} x^{n-1} = y_i \quad \text{for } i = 1, \dots, n \tag{4}$$

Notice that this is a linear system of equations in the coefficients *a*:

$$\underbrace{\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}}_{V} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- ► *V* is called the **Vandermonde matrix**
- \blacktriangleright It turns out that the solution to this system is unique, so long as the x_i are distinct \frown
- Interpolating a function this way is called Lagrange Interpolation

The Vandermonde Matrix

• If we want $p(x_i) = y_i$ for all *i*, then that implies: $a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_{n-1} x^{n-1} = y_i$ for $i = 1, \dots, n$ (4)

Notice that this is a linear system of equations in the coefficients a:

$$\underbrace{\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}}_{V} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

V is called the Vandermonde matrix

It turns out that the solution to this system is unique, so long as the xi are distinct (

Interpolating a function this way is called Lagrange Interpolation

(5)

The Vandermonde Matrix

• If we want $p(x_i) = y_i$ for all *i*, then that implies: $a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_{n-1} x^{n-1} = y_i$ for $i = 1, \dots, n$ (4)

Notice that this is a linear system of equations in the coefficients a:

$$\underbrace{\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}}_{V} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- V is called the Vandermonde matrix
- It turns out that the solution to this system is unique, so long as the x_i are distinct proof
- Interpolating a function this way is called Lagrange Interpolation

(5)

```
function vandermonde(X)
    n = length(X)
     V = [xi^s \text{ for } xi \text{ in } X, s \text{ in } 0:n-1]
    return V
end
lagrange(X, y) = vandermonde(X) \setminus y
function evaluate(a, x)
     sum(a[s] * x^{(s-1)} for s in eachindex(a))
end
```



```
function vandermonde(X)
    n = length(X)
     V = [xi^s \text{ for } xi \text{ in } X, s \text{ in } 0:n-1]
    return V
end
lagrange(X, y) = vandermonde(X) \setminus y
function evaluate(a, x)
     sum(a[s] * x^{(s-1)} for s in eachindex(a))
end
```



```
function vandermonde(X)
    n = length(X)
     V = [xi^s \text{ for } xi \text{ in } X, s \text{ in } 0:n-1]
    return V
end
lagrange(X, y) = vandermonde(X) \setminus y
function evaluate(a, x)
     sum(a[s] * x^{(s-1)} for s in eachindex(a))
end
```



```
function vandermonde(X)
    n = length(X)
     V = [xi^s \text{ for } xi \text{ in } X, s \text{ in } 0:n-1]
    return V
end
lagrange(X, y) = vandermonde(X) \setminus y
function evaluate(a, x)
     sum(a[s] * x^{(s-1)} for s in eachindex(a))
end
```


- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically

Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the **Runge phenomenon**

Runge Phenomenon

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically
- Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the **Runge phenomenon**

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically
- Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the **Runge phenomenon**

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically
- Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the **Runge phenomenon**

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically
- Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the **Runge phenomenon**

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically
- Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the Runge phenomenon

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically
- Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the Runge phenomenon

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically
- Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the Runge phenomenon

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically

Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the **Runge phenomenon**

- So far, it seems Lagrange interpolation works well
- Unfortunately, there are a number of well known cases where it fails catastrophically

Consider

$$f(x) = \frac{1}{1+x^2}$$

- When n = 4 the interpolant isn't great, but 4 points isn't that many
- By the time we're up to n = 11, it doesn't look like things are getting better
- In fact, you can show that this is a case where Lagrange interpolation will never converge
- Adding more data does not fix the problem. This is called the Runge phenomenon

How to avoid the Runge phenomenon

- The Runge phenomenon (explosive oscillation at the edges) tends to occur in most polynomial interpolation schemes with *evenly spaced grids*
 - High order polynomial terms tend to grow explosively as x gets larger
 - When you try to hit the extra data points on the edge of the domain by adding a high order polynomial term like x¹¹, that induces even more oscillations elsewhere in the domain

To avoid this, you can:

- 1. use another family of smooth polynomials called Chebyshev polynomials
- 2. use piecewise polynomials (Linear Interpolation, Splines, etc...)

I'll define what all of these mean in just a couple of slides

How to avoid the Runge phenomenon

- The Runge phenomenon (explosive oscillation at the edges) tends to occur in most polynomial interpolation schemes with *evenly spaced grids*
 - High order polynomial terms tend to grow explosively as x gets larger
 - When you try to hit the extra data points on the edge of the domain by adding a high order polynomial term like x¹¹, that induces even more oscillations elsewhere in the domain
- To avoid this, you can:
 - 1. use another family of smooth polynomials called Chebyshev polynomials
 - 2. use piecewise polynomials (Linear Interpolation, Splines, etc...)

I'll define what all of these mean in just a couple of slides

- Define $T_n(x) = \cos(n \cos^{-1} x)$ for $x \in [-1, 1]$
- The family of polynomials $\{T_n\}_{n=0}^{\infty}$ are called the **Chebyshev polynomials**
- Why are these actually polynomials?
 - > You can show that these functions satisfy the formula (recurrence relationship):

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
(6)

- If you start from $T_0 = \cos(0) = 1$ and $T_1(x) = \cos(\cos^{-1} x) = x$ (both clearly polynomials) and you just keep multiplying by x and adding them together, you must end up with a polynomial at the end
- Let's see this in practice:

$$T_{2}(x) = 2xT_{1}(x) - T_{0}(x) = 2x(x) - 1 = 2x^{2} - 1$$

$$T_{3}(x) = 2xT_{2}(x) - T_{1}(x) = 2x(2x^{2} - 1) - x = 4x^{3} - 3x$$

$$T_{4}(x) = 2xT_{3}(x) - T_{2}(x) = 2x(4x^{3} - 4x) - (2x^{2} - 1) = 8x^{4} - 8x^{2} + 1$$

- Define $T_n(x) = \cos(n \cos^{-1} x)$ for $x \in [-1, 1]$
- The family of polynomials $\{T_n\}_{n=0}^{\infty}$ are called the **Chebyshev polynomials**
- Why are these actually polynomials?
 - > You can show that these functions satisfy the formula (recurrence relationship):

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
(6)

- If you start from $T_0 = \cos(0) = 1$ and $T_1(x) = \cos(\cos^{-1} x) = x$ (both clearly polynomials) and you just keep multiplying by x and adding them together, you must end up with a polynomial at the end
- Let's see this in practice:

$$T_{2}(x) = 2xT_{1}(x) - T_{0}(x) = 2x(x) - 1 = 2x^{2} - 1$$

$$T_{3}(x) = 2xT_{2}(x) - T_{1}(x) = 2x(2x^{2} - 1) - x = 4x^{3} - 3x$$

$$T_{4}(x) = 2xT_{3}(x) - T_{2}(x) = 2x(4x^{3} - 4x) - (2x^{2} - 1) = 8x^{4} - 8x^{2} + 1$$

- Define $T_n(x) = \cos(n \cos^{-1} x)$ for $x \in [-1, 1]$
- The family of polynomials $\{T_n\}_{n=0}^{\infty}$ are called the **Chebyshev polynomials**
- Why are these actually polynomials?
 - > You can show that these functions satisfy the formula (recurrence relationship):

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
(6)

▶ If you start from $T_0 = \cos(0) = 1$ and $T_1(x) = \cos(\cos^{-1} x) = x$ (both clearly polynomials) and you just keep multiplying by x and adding them together, you must end up with a polynomial at the end

Let's see this in practice:

$$T_{2}(x) = 2xT_{1}(x) - T_{0}(x) = 2x(x) - 1 = 2x^{2} - 1$$

$$T_{3}(x) = 2xT_{2}(x) - T_{1}(x) = 2x(2x^{2} - 1) - x = 4x^{3} - 3x$$

$$T_{4}(x) = 2xT_{3}(x) - T_{2}(x) = 2x(4x^{3} - 4x) - (2x^{2} - 1) = 8x^{4} - 8x^{2} + 1$$

- Define $T_n(x) = \cos(n \cos^{-1} x)$ for $x \in [-1, 1]$
- The family of polynomials $\{T_n\}_{n=0}^{\infty}$ are called the **Chebyshev polynomials**
- Why are these actually polynomials?
 - > You can show that these functions satisfy the formula (recurrence relationship):

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
(6)

- ► If you start from T₀ = cos(0) = 1 and T₁(x) = cos(cos⁻¹ x) = x (both clearly polynomials) and you just keep multiplying by x and adding them together, you must end up with a polynomial at the end
- Let's see this in practice:

$$T_{2}(x) = 2xT_{1}(x) - T_{0}(x) = 2x(x) - 1 = 2x^{2} - 1$$

$$T_{3}(x) = 2xT_{2}(x) - T_{1}(x) = 2x(2x^{2} - 1) - x = 4x^{3} - 3x$$

$$T_{4}(x) = 2xT_{3}(x) - T_{2}(x) = 2x(4x^{3} - 4x) - (2x^{2} - 1) = 8x^{4} - 8x^{2} + 1$$

- Define $T_n(x) = \cos(n \cos^{-1} x)$ for $x \in [-1, 1]$
- The family of polynomials $\{T_n\}_{n=0}^{\infty}$ are called the **Chebyshev polynomials**
- Why are these actually polynomials?
 - > You can show that these functions satisfy the formula (recurrence relationship):

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
(6)

- ► If you start from T₀ = cos(0) = 1 and T₁(x) = cos(cos⁻¹ x) = x (both clearly polynomials) and you just keep multiplying by x and adding them together, you must end up with a polynomial at the end
- Let's see this in practice:

$$T_{2}(x) = 2xT_{1}(x) - T_{0}(x) = 2x(x) - 1 = 2x^{2} - 1$$

$$T_{3}(x) = 2xT_{2}(x) - T_{1}(x) = 2x(2x^{2} - 1) - x = 4x^{3} - 3x$$

$$T_{4}(x) = 2xT_{3}(x) - T_{2}(x) = 2x(4x^{3} - 4x) - (2x^{2} - 1) = 8x^{4} - 8x^{2} + 1$$

- Define $T_n(x) = \cos(n \cos^{-1} x)$ for $x \in [-1, 1]$
- The family of polynomials $\{T_n\}_{n=0}^{\infty}$ are called the **Chebyshev polynomials**
- Why are these actually polynomials?
 - > You can show that these functions satisfy the formula (recurrence relationship):

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
(6)

- ► If you start from T₀ = cos(0) = 1 and T₁(x) = cos(cos⁻¹ x) = x (both clearly polynomials) and you just keep multiplying by x and adding them together, you must end up with a polynomial at the end
- Let's see this in practice:

$$T_{2}(x) = 2xT_{1}(x) - T_{0}(x) = 2x(x) - 1 = 2x^{2} - 1$$

$$T_{3}(x) = 2xT_{2}(x) - T_{1}(x) = 2x(2x^{2} - 1) - x = 4x^{3} - 3x$$

$$T_{4}(x) = 2xT_{3}(x) - T_{2}(x) = 2x(4x^{3} - 4x) - (2x^{2} - 1) = 8x^{4} - 8x^{2} + 1$$

▶ Bounded between [-1, 1] so long as $x \in [-1, 1]$

These polynomials are orthogonal to each other Specifically (and not examinable), they are orthogonal with respect to an appropriate weighting function. I.e.

$$\int_{-1}^{1} T_n(x) T_k(x) w(x) dx = 0$$

for $n \neq k$ and $w(x) = \frac{1}{\sqrt{1-x^2}}$

- > You want nodes $\{x_k\}$ that are *unevenly spaced*.
- There are a known set of interpolation points that minimize the approximation error:

$$x_k = -\cos\left(\frac{2k-1}{2n}\pi\right)$$
 for $k = 1, \dots, n$

► Chebyshev Approximation Theorem: As long as our function f is smooth (has continuous kth derivatives for some k ≥ 1) Chebyshev approximation converges "nicely" to f Theorem **Chebyshev Polynomials**

20/32

- ▶ Bounded between [-1, 1] so long as $x \in [-1, 1]$
- These polynomials are orthogonal to each other Specifically (and not examinable), they are orthogonal with respect to an appropriate weighting function. I.e.,

$$\int_{-1}^{1} T_n(x) T_k(x) w(x) dx = 0$$

for $n \neq k$ and $w(x) = \frac{1}{\sqrt{1-x^2}}$

- > You want nodes $\{x_k\}$ that are *unevenly spaced*.
- There are a known set of interpolation points that minimize the approximation error:

$$x_k = -\cos\left(\frac{2k-1}{2n}\pi\right)$$
 for $k = 1, \dots, n$

► Chebyshev Approximation Theorem: As long as our function f is smooth (has continuous kth derivatives for some k ≥ 1) Chebyshev approximation converges "nicely" to f Theorem **Chebyshev Polynomials**

20/32

- ▶ Bounded between [-1, 1] so long as $x \in [-1, 1]$
- These polynomials are orthogonal to each other Specifically (and not examinable), they are orthogonal with respect to an appropriate weighting function. I.e,

$$\int_{-1}^1 T_n(x)T_k(x)w(x)dx = 0$$

for $n \neq k$ and $w(x) = \frac{1}{\sqrt{1-x^2}}$

- > You want nodes $\{x_k\}$ that are *unevenly spaced*.
- There are a known set of interpolation points that minimize the approximation error:

$$x_k = -\cos\left(rac{2k-1}{2n}\pi
ight)$$
 for $k = 1, \dots, n$

► Chebyshev Approximation Theorem: As long as our function f is smooth (has continuous kth derivatives for some k ≥ 1) Chebyshev approximation converges "nicely" to f Theorem

- ▶ Bounded between [-1, 1] so long as $x \in [-1, 1]$
- These polynomials are orthogonal to each other Specifically (and not examinable), they are orthogonal with respect to an appropriate weighting function. I.e.,

$$\int_{-1}^1 T_n(x)T_k(x)w(x)dx = 0$$

for $n \neq k$ and $w(x) = \frac{1}{\sqrt{1-x^2}}$

- > You want nodes $\{x_k\}$ that are *unevenly spaced*.
- There are a known set of interpolation points that minimize the approximation error:

$$x_k = -\cos\left(rac{2k-1}{2n}\pi
ight)$$
 for $k = 1, \dots, n$

► Chebyshev Approximation Theorem: As long as our function f is smooth (has continuous kth derivatives for some k ≥ 1) Chebyshev approximation converges "nicely" to f Theorem

We want an *n*th degree Chebyshev approximation:

1. Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1,1]:

$$z_k = -\cos\left(\frac{2k-1}{2m}\pi\right)$$
 $k = 1, \dots, m$

2. For interpolation on [a, b] instead of [-1, 1], adjust the nodes to the appropriate interval:

$$x_k = (z_k+1)\left(\frac{b-a}{2}\right) + a$$
 $k = 1, \dots, m$

- 3. Evaluate f at the appropriate points: $y_k = f(x_k)$ for $k = 1, \ldots, m$
- 4. Compute the Chebyshev coefficients:

$$c_i = \left(\frac{\sum_{k=1}^m y_k T_i(z_k)}{\sum_{k=1}^m T_i(z_k)^2}\right)$$

$$\hat{f}(x) = \sum_{i=0}^{n} c_i T_i \left(2\frac{x-a}{b-a} - 1 \right)$$
(7)

We want an *n*th degree Chebyshev approximation:

1. Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1,1]:

$$z_k = -\cos\left(\frac{2k-1}{2m}\pi\right)$$
 $k = 1, \dots, m$

2. For interpolation on [a, b] instead of [-1, 1], adjust the nodes to the appropriate interval:

$$x_k = (z_k+1)\left(rac{b-a}{2}
ight) + a$$
 $k = 1, \dots, m$

- 3. Evaluate f at the appropriate points: $y_k = f(x_k)$ for $k = 1, \ldots, m$
- 4. Compute the Chebyshev coefficients:

$$c_i = \left(\frac{\sum_{k=1}^m y_k T_i(z_k)}{\sum_{k=1}^m T_i(z_k)^2}\right)$$

$$\hat{f}(x) = \sum_{i=0}^{n} c_i T_i \left(2\frac{x-a}{b-a} - 1 \right)$$
(7)

We want an *n*th degree Chebyshev approximation:

1. Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1,1]:

$$z_k = -\cos\left(\frac{2k-1}{2m}\pi\right)$$
 $k = 1, \dots, m$

2. For interpolation on [a, b] instead of [-1, 1], adjust the nodes to the appropriate interval:

$$x_k = (z_k+1)\left(rac{b-a}{2}
ight) + a$$
 $k = 1, \dots, m$

3. Evaluate f at the appropriate points: $y_k = f(x_k)$ for $k = 1, \ldots, m$

4. Compute the Chebyshev coefficients:

$$c_i = \left(\frac{\sum_{k=1}^m y_k T_i(z_k)}{\sum_{k=1}^m T_i(z_k)^2}\right)$$

$$\hat{f}(x) = \sum_{i=0}^{n} c_i T_i \left(2\frac{x-a}{b-a} - 1 \right)$$
(7)

We want an *n*th degree Chebyshev approximation:

1. Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1,1]:

$$z_k = -\cos\left(\frac{2k-1}{2m}\pi\right)$$
 $k = 1, \dots, m$

2. For interpolation on [a, b] instead of [-1, 1], adjust the nodes to the appropriate interval:

$$x_k = (z_k+1)\left(rac{b-a}{2}
ight) + a$$
 $k = 1, \ldots, m$

- 3. Evaluate f at the appropriate points: $y_k = f(x_k)$ for $k = 1, \ldots, m$
- 4. Compute the Chebyshev coefficients:

$$c_i = \left(\frac{\sum_{k=1}^m y_k T_i(z_k)}{\sum_{k=1}^m T_i(z_k)^2}\right)$$

$$\hat{f}(x) = \sum_{i=0}^{n} c_i T_i \left(2\frac{x-a}{b-a} - 1 \right)$$
(7)

We want an *n*th degree Chebyshev approximation:

1. Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1,1]:

$$z_k = -\cos\left(\frac{2k-1}{2m}\pi\right)$$
 $k = 1, \dots, m$

2. For interpolation on [a, b] instead of [-1, 1], adjust the nodes to the appropriate interval:

$$x_k = (z_k+1)\left(rac{b-a}{2}
ight) + a$$
 $k = 1, \dots, m$

- 3. Evaluate f at the appropriate points: $y_k = f(x_k)$ for $k = 1, \ldots, m$
- 4. Compute the Chebyshev coefficients:

$$c_i = \left(\frac{\sum_{k=1}^m y_k T_i(z_k)}{\sum_{k=1}^m T_i(z_k)^2}\right)$$

$$\hat{f}(x) = \sum_{i=0}^{n} c_i T_i \left(2\frac{x-a}{b-a} - 1 \right)$$
(7)
m = n + 1

TT (...

$$f(h, x) = \cos(h * a\cos(x))$$

$$z = [-\cos((2k - 1)/(2m) * pi) \text{ for } k = 1:m]$$

$$x = (z . + 1) . * (b - a)/2 . + a$$

$$y = f.(x)$$

$$c = map(0:m) \text{ do } i \text{ # Calculate coefs}$$

$$num = sum(y[k] * T(i, z[k]))$$

$$for k in 1:m)$$

$$den = sum(T(i, z[k])^{2}$$

$$for k in 1:m)$$

$$return num/den$$
end
$$fh(x) = sum(\text{ # evaluate approx}$$

$$ci * T(i, 2 * (x-a)/(b-a) - 1)$$

$$for (ci, i) in zip(c, 0:n)$$

m = n + 1

m = n + 1

m = n + 1

Chebyshev in Practice m = n + 1

for (ci, i) in zip(c, 0:n)

)

$$T(n, x) = \cos(n * a\cos(x))$$

$$z = [-\cos((2k - 1)/(2m) * pi) \text{ for } k = 1:m]$$

$$x = (z .+ 1) .* (b - a)/2 .+ a$$

$$y = f.(x)$$

$$c = map(0:m) \text{ do } i \quad \# Calculate coefs$$

$$num = sum(y[k] * T(i, z[k]))$$

$$den = sum(T(i, z[k])^{2}$$

$$for k in 1:m)$$

$$den = sum(T(i, z[k])^{2}$$

$$for k in 1:m)$$

$$return num/den$$
end
$$0.2$$

$$fh(x) = sum(\quad \# evaluate approx$$

$$ci * T(i, 2 * (x-a)/(b-a) - 1)$$

-4

-2

0

2

4

Chebyshev Interpolation

When to use?

- Chebyshev interpolation works really well if you are sure that your function is defined everywhere and smooth
- ▶ The smoother it is, the better Chebyshev approximation performs (faster convergence)
- Sometimes it has trouble at the boundary
 - This can be fixed by using a different set of points x_i that include the boundary node
 - ▶ This is called the **expanded Chebyshev array** you can look this up if you need it
- ▶ The bigger trouble arises when you have functions that are not bounded: if you have a utility function that goes to $-\infty$ when $c \rightarrow 0$, this can cause serious problems for Chebyshev polynomials
- Or functions that have kinks (discontinuous derivatives): all of the convergence guarantees go out the window

Chebyshev Interpolation

When to use?

- Chebyshev interpolation works really well if you are sure that your function is defined everywhere and smooth
- ▶ The smoother it is, the better Chebyshev approximation performs (faster convergence)
- Sometimes it has trouble at the boundary
 - This can be fixed by using a different set of points x_i that include the boundary node
 - ▶ This is called the expanded Chebyshev array you can look this up if you need it
- The bigger trouble arises when you have functions that are not bounded: if you have a utility function that goes to $-\infty$ when $c \to 0$, this can cause serious problems for Chebyshev polynomials
- Or functions that have kinks (discontinuous derivatives): all of the convergence guarantees go out the window

Chebyshev Interpolation

When to use?

- Chebyshev interpolation works really well if you are sure that your function is defined everywhere and smooth
- ▶ The smoother it is, the better Chebyshev approximation performs (faster convergence)
- Sometimes it has trouble at the boundary
 - This can be fixed by using a different set of points x_i that include the boundary node
 - ▶ This is called the expanded Chebyshev array you can look this up if you need it
- ▶ The bigger trouble arises when you have functions that are not bounded: if you have a utility function that goes to $-\infty$ when $c \rightarrow 0$, this can cause serious problems for Chebyshev polynomials
- Or functions that have kinks (discontinuous derivatives): all of the convergence guarantees go out the window

Section 3

Linear Interpolation and Splines

Linear Interpolation

- Rather than use a family of polynomials that are defined everywhere, we can try polynomials that are more limited in scope
- In particular let's consider the piecewise linear functions (functions which look linear on any subinterval)
 - This is literally what you get if you just draw straight lines between the points on the graph
- Our prototypical piecewise linear function will be the "hat" function on [x₁, x₂]

$$\phi_{x_1, x_m, x_2}(x) = \begin{cases} \frac{x - x_1}{x_m - x_1} & \text{if } x_1 \le x \le x_m \\ 1 - \frac{x - x_m}{x_2 - x_m} & \text{if } x_m < x \le x_2 \\ 0 & \text{otherwise} \end{cases}$$

You can think of x_m as the point where φ attains its maximum value 1

- Suppose we have a function $f : [a, b] \to \mathbb{R}$ and have the data points $\{(x_i, y_i)\}_{i=1}^n$.
- How do we construct our linear interpolant?
- Let's add up the appropriate "hat" functions:
 - For each *i*, let $\phi^i(x) = \phi_{x_{i-1},x_i,x_{i+1}}(x)$
 - This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any $x_0 < x_1$ and $x_{n+1} > x_n$ so that this definition works

Take a look closely at
$$\phi^i$$
. For all $1 < i < n$:
 $\phi^i(x_{i-1}) = 0$
 $\phi^i(x_i) = 1$
 $\phi^i(x_{i+1}) = 0$

▶ Define $\hat{f}(x) := \sum_{i=1}^{n} c_i \phi^i(x)$ for some coefficients c_i

$$\hat{f}(x_j) = \sum_{\substack{i=1\\\text{All 0 when } i \neq j}}^n c_i \phi^i(x_j) = c_j \phi^j(x_j) = c_j$$
(8)

- Suppose we have a function $f : [a, b] \to \mathbb{R}$ and have the data points $\{(x_i, y_i)\}_{i=1}^n$.
- How do we construct our linear interpolant?
- Let's add up the appropriate "hat" functions:
 - For each *i*, let $\phi^i(x) = \phi_{x_{i-1},x_i,x_{i+1}}(x)$
 - This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any $x_0 < x_1$ and $x_{n+1} > x_n$ so that this definition works

Take a look closely at
$$\phi^i$$
. For all $1 < i < n$:
 $\phi^i(x_{i-1}) = 0$ $\phi^i(x_i) = 1$ $\phi^i(x_{i+1}) = 0$

▶ Define $\hat{f}(x) := \sum_{i=1}^{n} c_i \phi^i(x)$ for some coefficients c_i

$$\hat{f}(x_j) = \underbrace{\sum_{i=1}^{n} c_i \phi^i(x_j)}_{\text{All 0 when } i \neq j} = c_j \phi^j(x_j) = c_j$$
(8)

- Suppose we have a function $f : [a, b] \to \mathbb{R}$ and have the data points $\{(x_i, y_i)\}_{i=1}^n$.
- How do we construct our linear interpolant?
- Let's add up the appropriate "hat" functions:
 - For each *i*, let $\phi^i(x) = \phi_{x_{i-1},x_i,x_{i+1}}(x)$
 - This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any $x_0 < x_1$ and $x_{n+1} > x_n$ so that this definition works

Take a look closely at
$$\phi^i$$
. For all $1 < i < n$:
 $\phi^i(x_{i-1}) = 0$ $\phi^i(x_i) = 1$ $\phi^i(x_{i+1}) = 0$

▶ Define $\hat{f}(x) := \sum_{i=1}^{n} c_i \phi^i(x)$ for some coefficients c_i

$$\hat{f}(x_j) = \underbrace{\sum_{i=1}^{n} c_i \phi^i(x_j)}_{\text{All 0 when } i \neq j} = c_j \phi^j(x_j) = c_j$$
(8)

- Suppose we have a function $f : [a, b] \to \mathbb{R}$ and have the data points $\{(x_i, y_i)\}_{i=1}^n$.
- How do we construct our linear interpolant?
- Let's add up the appropriate "hat" functions:
 - For each *i*, let $\phi^i(x) = \phi_{x_{i-1},x_i,x_{i+1}}(x)$
 - This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any $x_0 < x_1$ and $x_{n+1} > x_n$ so that this definition works

Take a look closely at
$$\phi^i$$
. For all $1 < i < n$:
 $\phi^i(x_{i-1}) = 0$ $\phi^i(x_i) = 1$ $\phi^i(x_{i+1}) = 0$

• Define $\hat{f}(x) := \sum_{i=1}^{n} c_i \phi^i(x)$ for some coefficients c_i

$$\hat{f}(x_j) = \underbrace{\sum_{i=1}^{n} c_i \phi^i(x_j)}_{\text{All 0 when } i \neq j} = c_j \phi^j(x_j) = c_j$$
(8)

- Suppose we have a function $f : [a, b] \to \mathbb{R}$ and have the data points $\{(x_i, y_i)\}_{i=1}^n$.
- How do we construct our linear interpolant?
- Let's add up the appropriate "hat" functions:
 - For each *i*, let $\phi^i(x) = \phi_{x_{i-1},x_i,x_{i+1}}(x)$
 - This is putting a little hat function over every data point we have

We have to be careful at the edges. Pick any $x_0 < x_1$ and $x_{n+1} > x_n$ so that this definition works

Take a look closely at
$$\phi^i$$
. For all $1 < i < n$:
 $\phi^i(x_{i-1}) = 0$ $\phi^i(x_i) = 1$ $\phi^i(x_{i+1}) = 0$

• Define $\hat{f}(x) := \sum_{i=1}^{n} c_i \phi^i(x)$ for some coefficients c_i

$$\hat{f}(x_j) = \sum_{\substack{i=1\\\text{All 0 when } i \neq j}}^n c_i \phi^i(x_j) = c_j \phi^j(x_j) = c_j$$
(8)

Linear Interpolation Solves a Linear System

- Let's impose our interpolation conditions
 - We want $\hat{f}(x_i) = f(x_i) = y_i$ for all i
 - That means eq. (8) implies

$$y_i = \hat{f}(x_i) = c_i$$
 for all i (9)

This is a (really simple) system of linear equations:

$$\begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & & & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}$$

It's almost trivial, but we're going to come back to this when we discuss splines

(10)

Linear Interpolation

When to use it?

- Linear interpolation is a great fallback if you have a badly behaved function
 - E.g., kinks, poles, etc...
- ▶ It's simple and easy to implement: it's basically our mental model anyway
- You'll never be confused about why it's doing what it's doing
- Downsides:
 - ▶ Slow convergence you often need way more grid points to get a good approximation
 - Not differentiable at the data points sometimes an optimizer will get stuck on a kink and you will get a poor solution

Linear Interpolation

When to use it?

- Linear interpolation is a great fallback if you have a badly behaved function
 - E.g., kinks, poles, etc...
- It's simple and easy to implement: it's basically our mental model anyway
- You'll never be confused about why it's doing what it's doing
- Downsides:
 - Slow convergence you often need way more grid points to get a good approximation
 - Not differentiable at the data points sometimes an optimizer will get stuck on a kink and you will get a poor solution

- ▶ With piecewise linear functions, the problem is that they're not smooth enough
- What if we tried the same approach, but with a cubic polynomial on each sub-interval?

Suppose for every interval $[x_{i-1}, x_i]$ we want our approximation to be a cubic polynomial:

 $\widehat{f}(x) = a_i + b_i x + c_i x^2 + d_i x^3$ for $x \in [x_{i-1}, x_i]$, and for all i

Interpolation:
$$y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3$$
(11)for $i = 1, ..., n$ for $i = 1, ..., n$ (12)Continuity: $y_i = a_{i+1} + b_{i+1}x_i + c_{i+1}x_i^2 + d_{i+1}x_i^3$ (12)for $i = 0, ..., n - 1$ for $i = 0, ..., n - 1$ (13)Continuous \hat{f}' : $b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1}x_i + 3d_{i+1}x_i^2$ (13)for $i = 1, ..., n - 1$ for $i = 1, ..., n - 1$ (14)for $i = 1, ..., n - 1$

- ▶ With piecewise linear functions, the problem is that they're not smooth enough
- What if we tried the same approach, but with a cubic polynomial on each sub-interval?
- Suppose for every interval $[x_{i-1}, x_i]$ we want our approximation to be a cubic polynomial:

$$\widehat{f}(x) = a_i + b_i x + c_i x^2 + d_i x^3$$
 for $x \in [x_{i-1}, x_i]$, and for all i

Interpolation:

$$y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3$$
 (11)

 for $i = 1, ..., n$
 for $i = 1, ..., n$

 Continuity:
 $y_i = a_{i+1} + b_{i+1}x_i + c_{i+1}x_i^2 + d_{i+1}x_i^3$ (12)

 for $i = 0, ..., n - 1$

 Continuous \hat{f}' :
 $b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1}x_i + 3d_{i+1}x_i^2$ (13)

 for $i = 1, ..., n - 1$

 Continuous \hat{f}'' :
 $2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1}x_i$ (14)

 for $i = 1, ..., n - 1$

- ▶ With piecewise linear functions, the problem is that they're not smooth enough
- ▶ What if we tried the same approach, but with a cubic polynomial on each sub-interval?
- Suppose for every interval $[x_{i-1}, x_i]$ we want our approximation to be a cubic polynomial:

$$\widehat{f}(x) = a_i + b_i x + c_i x^2 + d_i x^3$$
 for $x \in [x_{i-1}, x_i]$, and for all i

Interpolation:

$$y_{i} = a_{i} + b_{i}x_{i} + c_{i}x_{i}^{2} + d_{i}x_{i}^{3}$$
(11)
for $i = 1, ..., n$
Continuity:

$$y_{i} = a_{i+1} + b_{i+1}x_{i} + c_{i+1}x_{i}^{2} + d_{i+1}x_{i}^{3}$$
(12)
for $i = 0, ..., n - 1$
Continuous \hat{f}' :

$$b_{i} + 2c_{i}x_{i} + 3d_{i}x_{i}^{2} = b_{i+1} + 2c_{i+1}x_{i} + 3d_{i+1}x_{i}^{2}$$
(13)
for $i = 1, ..., n - 1$

Continuous
$$\hat{f}''$$
:
 $2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1}x_i$ (14)
for $i = 1, ..., n-1$

- ▶ With piecewise linear functions, the problem is that they're not smooth enough
- What if we tried the same approach, but with a cubic polynomial on each sub-interval?
- Suppose for every interval $[x_{i-1}, x_i]$ we want our approximation to be a cubic polynomial:

$$\widehat{f}(x) = a_i + b_i x + c_i x^2 + d_i x^3$$
 for $x \in [x_{i-1}, x_i]$, and for all i

Interpolation:

$$y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3$$
 (11)
for $i = 1, ..., n$

 Continuity:
 $y_i = a_{i+1} + b_{i+1} x_i + c_{i+1} x_i^2 + d_{i+1} x_i^3$ (12)
for $i = 0, ..., n - 1$

 Continuous \hat{f}' :
 $b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1} x_i + 3d_{i+1} x_i^2$ (13)
for $i = 1, ..., n - 1$

 Continuous \hat{f}'' :
 $2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i$ (14)

- ▶ With piecewise linear functions, the problem is that they're not smooth enough
- ▶ What if we tried the same approach, but with a cubic polynomial on each sub-interval?
- Suppose for every interval $[x_{i-1}, x_i]$ we want our approximation to be a cubic polynomial:

$$\widehat{f}(x) = a_i + b_i x + c_i x^2 + d_i x^3$$
 for $x \in [x_{i-1}, x_i]$, and for all i

Interpolation:

$$y_{i} = a_{i} + b_{i}x_{i} + c_{i}x_{i}^{2} + d_{i}x_{i}^{3}$$
(11)
for $i = 1, ..., n$
Continuity:

$$y_{i} = a_{i+1} + b_{i+1}x_{i} + c_{i+1}x_{i}^{2} + d_{i+1}x_{i}^{3}$$
(12)
for $i = 0, ..., n - 1$
Continuity:

$$y_{i} = a_{i+1} + b_{i+1}x_{i} + c_{i+1}x_{i}^{2} + d_{i+1}x_{i}^{3}$$
(12)
for $i = 0, ..., n - 1$

Continuous
$$f'$$
: $b_i + 2c_ix_i + 3d_ix_i^2 = b_{i+1} + 2c_{i+1}x_i + 3d_{i+1}x_i^2$ (13)
for $i = 1, ..., n-1$

Continuous
$$\hat{f}''$$
:
 $2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i$ (14)
for $i = 1, ..., n-1$

- ▶ With piecewise linear functions, the problem is that they're not smooth enough
- ▶ What if we tried the same approach, but with a cubic polynomial on each sub-interval?
- Suppose for every interval $[x_{i-1}, x_i]$ we want our approximation to be a cubic polynomial:

$$\widehat{f}(x) = a_i + b_i x + c_i x^2 + d_i x^3$$
 for $x \in [x_{i-1}, x_i]$, and for all i

Interpolation:

$$y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3$$
 (11)
for $i = 1, ..., n$
Continuity:
 $y_i = a_{i+1} + b_{i+1} x_i + c_{i+1} x_i^2 + d_{i+1} x_i^3$ (12)
for $i = 0, ..., n - 1$

Continuous
$$\hat{f}'$$
: $b_i + 2c_ix_i + 3d_ix_i^2 = b_{i+1} + 2c_{i+1}x_i + 3d_{i+1}x_i^2$ (13)
for $i = 1, ..., n-1$

Continuous
$$\hat{f}''$$
: $2c_i + 6d_ix_i = 2c_{i+1} + 6d_{i+1}x_i$ (14)
for $i = 1, ..., n-1$

Cubic splines solve a linear system

So far this is all one big linear system of equations!

- We know how to solve linear systems
- Stack the conditions up in a matrix, and have the computer solve it
- We have 4n variables and 4n 2 equations
- ▶ Why did we lose two equations? Check back on the previous slide
 - Continuity of the derivatives is only imposed in the interior.
 - Need to make some assumptions about the derivatives of our approximation at the edges of our domain
 - These are called **boundary conditions**

Cubic splines solve a linear system

So far this is all one big linear system of equations!

- We know how to solve linear systems
- Stack the conditions up in a matrix, and have the computer solve it
- We have 4n variables and 4n 2 equations
- > Why did we lose two equations? Check back on the previous slide
 - Continuity of the derivatives is only imposed in the interior.
 - Need to make some assumptions about the derivatives of our approximation at the edges of our domain
 - These are called **boundary conditions**

Cubic splines solve a linear system

So far this is all one big linear system of equations!

- We know how to solve linear systems
- Stack the conditions up in a matrix, and have the computer solve it
- We have 4n variables and 4n 2 equations
- > Why did we lose two equations? Check back on the previous slide
 - Continuity of the derivatives is only imposed in the interior.
 - Need to make some assumptions about the derivatives of our approximation at the edges of our domain
 - These are called boundary conditions

Spline Boundary Conditions

There are three main options:

• Natural spline:
$$\widehat{f}'(x_0) = 0 = \widehat{f}'(x_n)$$

• Hermite Spline:
$$\hat{f}'(x_0) = y'_0$$
 and $\hat{f}'(x_n) = y'_n$

Assumes you know the true derivatives at the boundary

Secant spline:
$$\hat{f}'(x_0) = \frac{\hat{f}(x_1) - \hat{f}(x_0)}{x_1 - x_0}$$
 and a similar condition for $\hat{f}'(x_n)$

Assumes a linear approximation of the derivative at the lower and upper bounds

Which you choose depends on the specifics of the problem

Often the *natural* spline is not a good fit if you know your function is strictly concave (like a utility function)

Unless you're explicitly asked, don't code these up yourself

- Extremely efficient implementations (for splines and linear interpolation) are available in Interpolations.jl
- There are also some other fun things you can try:
 - Shape preserving splines: these splines add extra conditions to ensure that the approximation will never have a curvature that does not match the input data
 - I.e, if your data is sampled from a strictly concave function, the resulting spline will also be strictly concave
- Crucially, all of these methods generalize quite nicely to multiple dimensions:
 - In Interpolations.jl it's the same functions for multidimensional splines

- Unless you're explicitly asked, don't code these up yourself
- Extremely efficient implementations (for splines and linear interpolation) are available in Interpolations.jl
- There are also some other fun things you can try:
 - Shape preserving splines: these splines add extra conditions to ensure that the approximation will never have a curvature that does not match the input data
 - I.e, if your data is sampled from a strictly concave function, the resulting spline will also be strictly concave
- Crucially, all of these methods generalize quite nicely to multiple dimensions:
 - In Interpolations.jl it's the same functions for multidimensional splines

- Unless you're explicitly asked, don't code these up yourself
- Extremely efficient implementations (for splines and linear interpolation) are available in Interpolations.jl
- There are also some other fun things you can try:
 - Shape preserving splines: these splines add extra conditions to ensure that the approximation will never have a curvature that does not match the input data
 - I.e, if your data is sampled from a strictly concave function, the resulting spline will also be strictly concave
- Crucially, all of these methods generalize quite nicely to multiple dimensions:
 - In Interpolations.jl it's the same functions for multidimensional splines

- Unless you're explicitly asked, don't code these up yourself
- Extremely efficient implementations (for splines and linear interpolation) are available in Interpolations.jl
- There are also some other fun things you can try:
 - Shape preserving splines: these splines add extra conditions to ensure that the approximation will never have a curvature that does not match the input data
 - I.e, if your data is sampled from a strictly concave function, the resulting spline will also be strictly concave
- Crucially, all of these methods generalize quite nicely to multiple dimensions:
 - In Interpolations.jl it's the same functions for multidimensional splines

Section 4

Optional Content

Lagrange Interpolant is Unique

Theorem 1

Suppose we have data $\{(x_i, y_i) \mid i = 1, ..., n\}$ where the x_i are all unique. There is a unique polynomial of degree n - 1 that interpolates these values.

Proof.

- Since the Vandermonde matrix V has full rank, we know that a solution p(x) exists
- Suppose that p̂(x) is a polynomial of degree at most n − 1 which also interpolates these points.
- We know that since \hat{p} interpolates our data, $\hat{p}(x_i) = p(x_i) = y_i$ for all *i*.
- ▶ This means that $g(x) = p(x) \hat{p}(x)$ is a polynomial of degree at most n 1 which has n distinct zeros (all of the data points).
- ▶ The only such polynomial is the zero polynomial, which implies that $p = \hat{p}$

Chebyshev Approximation Theorem

Theorem 2

Assume that $f:[-1,1] \rightarrow \mathbb{R}$ has continuous kth derivatives. If

$$c_j \equiv \frac{2}{\pi} \int_{-1}^{1} \frac{f(x)T_j(x)}{\sqrt{1-x^2}} dx$$

and

$$C_n(x) \equiv \frac{1}{2}c_0 + \sum_{j=1}^n c_j T_j(x)$$

Then there is a $B < \infty$ such that for all $n \ge 2$:

$$\|f-C_n\|_{\infty}\leq \frac{B\log n}{n^k}$$

This means that for smooth enough functions, our Chebyshev approximation will converge uniformly (and rapidly) to the true function

• Note that
$$||f||_{\infty} := \max_{x} |f(x)|$$