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Introduction

Question: What are the determinants of on-the-job learning?

I First-order to study sorting, monopsony, and human capital accumulation

I Several potential sources:

I Intrinsic own learning ability

I Firm learning environment

I Composition of coworkers

I Challenges:

1. Human capital is not observable → need a model

2. Any model with all these features has historically been intractable
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What we do

I Theory: Extend Postel–Vinay and Robin (2002) to accommodate

1. Arbitrarily large multi-worker firms

2. Rich two sided heterogeneity in firm and worker productivities and learning characteristics

3. Complementarities in production and learning across workers

I Computation: Overcome curse of dimensionality by

I Approximating key model objects with neural networks

I Exploiting recent advances in deep learning

I Measurement: Calibrate to French matched employer-employee admin data (DADS)

I Observe coworker composition for near-universe of French workers/firms

I Detailed wage and hours data; granular occupation codes
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What we find

I Learning: Learning from more skilled coworkers is dominant source of learning on the job

– Accounts for more than 50% of the variance in human capital growth rates

– Remainder split between learning ability (1/3) and firm effects (2/3)

– Switching off learning from coworkers decreases human capital and wages 25%

I Two key sorting motives:

1. Production complementarities (worker/firm and worker/coworkers) induce positive
assortative matching

2. Learning complementarities (worker/coworkers) induce negative assortative matching

→ production motive dominant for low human capital workers

→ training motive dominates production gains at high human capital levels
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Related Literature

I Peer Effects in Labor Markets: Jarosch, Oberfield, and Rossi-Hansberg (2021), Freund
(2024), Herkenhoff, Lise, Menzio, and Phillips (2024), Ma, Nakab, and Vidart (2024)

Contribution:

1. Whole distribution of coworkers matters for learning and wages

2. Much richer patterns of sorting and selection

I Machine Learning in Economics:

I Methods Papers: Maliar, Maliar, and Winant (2021), Kahou, Fernandez-Villaverde, Perla,
and Sood (2022), Azinovic, Gaegauf, and Scheidegger (2022), Duarte, Duarte, and Silva
(2023)

I Applications: Duarte (2022), Jungerman (2023)

Contribution: heterogeneously sized state spaces



6/30

Model
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Environment

Time is continuous (omit time subscripts) , populated by a continuum of workers and firms:

Workers

I Indexed by i ∈ [0,Nw ]

I Linear preferences, discount rate ρ

I Heterogeneous in
1. General human capital hi
2. Fixed learning ability ai

I Workers “retire” at rate δr , replaced with
draws from Gw

I New workers start unmatched

Firms

I Indexed by k ∈ [0, 1]

I Linear preferences, discount rate ρ

I Heterogeneous in
1. Fixed productivity zk
2. Fixed learning environment qk

I Firms die at rate δf , replaced with draws
from Gf

I New firms start unmatched

I Firms consist of nk matched workers
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Technology
Augment Postel–Vinay and Robin (2002) to add complementarities in two ways:

1. Production: Output produced according to a CES:

F (zk , qk ,Xk︸ ︷︷ ︸
Sk

) := zk

(∑
i

hηi

) 1
η

(1)

where

I η controls the elasticity of substitution between workers

I Can accommodate both supermodular and submodular production functions

2. Learning: Extend Jarosch, Oberfield, and Rossi-Hansberg (2021):

log

(
h′i
hi

)
= log ai + log qk +

θ+

nk − 1

∑
j | hj>hi

log

(
hj
hi

)
︸ ︷︷ ︸
Effect of More Skilled Workers

+
θ−

nk − 1

∑
j | hj<hi

log

(
hj
hi

)
︸ ︷︷ ︸

Effect of Less Skilled Workers

(2)

→ Implication: values are not separable across matches Firm State Nonemployed
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Meetings and Matches

I Workers and firms match in a frictional labor market

I Technology: each worker generates meetings at rate ψN if unmatched or ψE if matched

I Meetings are allocated uniformly to workers, proportional to match generation

I Meetings are allocated to firms proportional to firm size

→ for Gibrat’s law, otherwise large firms could not grow as fast (in proportional terms) as small firms

Note: we assume firms born with 1 “manager” so they can match

I Analogous to balanced matching as in Burdett and Vishwanath (1988)

I Firms and workers may agree on a wage wi and form a match

I Standard bargaining assumptions following Postel–Vinay and Robin (2002)
→ ensure the familiar sequential auctions bargaining solution, with bilaterally efficient matches

I Additional assumptions to deal with large multi-worker firms
→ avoids thinking about simultaneously negotiating with multiple workers within a firm

Bargaining Assumptions
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Separations and Values

I Matches can be terminated unilaterally, but only at stochastic intervals:

1. Renegotiation shocks which occur at a rate λ

→ avoids multilateral negotiations, but means some matches can persist with negative surplus

2. When the worker meets another firm (at a rate ψE )

I Matches can also exogenously separate at rate δm Separation Policies

I Rest of model:

1. Joint value V (Sk) Joint Value

PDV of flow payments to all coalition members

2. Worker value Wi (Sk) Worker Value

3. Ergodic distribution χ

Equilibrium
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Computation
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Computational Algorithm

Since wages are not allocative, we can proceed in two steps:

1. Solve for joint value V and ergodic distribution χ jointly:

I Iterate training (updating) V and simulating to approximate χ until jointly converged

I Key observation: We don’t need wages at all for this step

I Challenge: very high-dimensional heterogeneously-sized state space
Number of states of a firm with n workers is proportional to n

2. Solving for worker value W :

I Key observation: HJB for W is more complicated than V , but we already have χ

I After solving for W , can back out wages along simulation path
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Neural Networks are Function Approximators

I Challenges: Curse of dimensionality and heterogeneously sized state spaces

I Solution: approximate V and W with neural networks

I Neural Networks are highly parameterized function approximators with three key features:

1. Universal approximation theorem (Hornik, Stinchcombe, and White 1989)

2. Number of parameters required does not depend on dimension of state space (increases
exponentially for polynomials)
Asymptotics: approximation error falls with 1/M where M is number of parameters (1/MD for

polynomials)

3. Differentiable and easy to “train”
Easy to exploit state-of-the-art libraries and algorithms

Definition Example Training Properties

I Highly effective at solving high dimensional dynamic programs (Maliar, Maliar, and
Winant 2021, Azinovic, Gaegauf, and Scheidegger 2022)

I With appropriate architectures, can handle set valued states Permutation Invariance
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Defining the Loss Function
I Assume a NN approximation parameterized by θV

I Need to define a loss function to “train” the neural network to minimize

LV (θV ) :=

∫
RV (Sk ; θV )2dΩ(Sk)

I RV (Sk ; θV ) is the residual of the joint value HJB evaluated at Sk

I Ω is a distribution over states (in principle, any measure would do)

I In practice, we want one that prioritizes accuracy in the states we care about

A natural choice is χ, but want good approximation on states off equilibrium

→ synthetic distribution that augments χ with all states reachable within a single event from χ

I We train θV by stochastic gradient descent on batches sampled from Ω

I Works well with Monte Carlo approximations of integrals in HJB

We find accurate enough with 50-100 draws for each integral

I Solves HJBs to reasonable degree of accuracy (L2 errors < 10−5) in 25 minutes on a GPU

Can achieve higher accuracy with more computation time V Convergence W Convergence χ Convergence
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Measurement
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Data

I French matched employer-employee administrative data

I Constructed using mandatory form all businesses must submit every year (DADS)

I Two main datasets:

1. Short panel: near-universe of workers, but overlapping structure (IDs reshuffled)

I observe full universe of workers and coworkers

I use this for descriptive evidence and main estimation targets

2. Long panel: full employment history of people born in October

I use this for flow rates and measuring nonemployment

I Key variables: wages, hours, establishment, occupation, demographics

I What we don’t have: worker education
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Defining a team

I Key decision: how do we define a team?

I Too narrow → omit relevant coworkers

I Too broad → include coworkers you never interact with

I Our approach: teams are set of coworkers at the establishment within same 1-digit
occupation

I Want to be conservative in not excluding relevant interactions

I Ex: 2-digit occupation would separately categorize “Lawyers” from “Legal Professionals”

I Ex: 4-digit occupation would separately categorize “Medical Residents” from “Hospital
Doctors without an Independent Practice”

Occ Codes Flow Rates
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Calibration Strategy

I External:

I Retirement rate, discounting set exogenously

I Learning and renegotiation shocks set for expected waiting time of 1 year

I Normalize non-separable means to zero

Externally Set

I Internally calibrate remaining parameters by indirect inference:

1. Variances, covariances of wage growth to match initial distributions

2. Labor market flows to match arrival rates of shocks

3. Within/between firm variance decomposition to match η

See Herkenhoff, Lise, Menzio, and Phillips (2024)

4. Auxiliary regression to target learning function parameters Auxiliary Regression

Parameter Estimates
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Results
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Drivers of Sorting

Sorting patterns depend on production and learning complementarities:

1. Complementarities in production b/w worker and firm productivities (h, z)

→ motive for positive assortative matching

2. Complementarities in production between workers within a firm

I η = 0.939 < 1 so production function is supermodular

→ another motive for positive assortative matching

3. Complementarities in learning between workers

I A worker training their coworkers is more valuable when gap to coworkers is larger

→ motive for negative assortative matching



20/30

Drivers of Sorting

Sorting patterns depend on production and learning complementarities:

1. Complementarities in production b/w worker and firm productivities (h, z)

→ motive for positive assortative matching

2. Complementarities in production between workers within a firm

I η = 0.939 < 1 so production function is supermodular

→ another motive for positive assortative matching

3. Complementarities in learning between workers

I A worker training their coworkers is more valuable when gap to coworkers is larger

→ motive for negative assortative matching



20/30

Drivers of Sorting

Sorting patterns depend on production and learning complementarities:

1. Complementarities in production b/w worker and firm productivities (h, z)

→ motive for positive assortative matching

2. Complementarities in production between workers within a firm

I η = 0.939 < 1 so production function is supermodular

→ another motive for positive assortative matching

3. Complementarities in learning between workers

I A worker training their coworkers is more valuable when gap to coworkers is larger

→ motive for negative assortative matching



21/30

Sorting along coworkers: low-skill learn, high-skill teach

Distance to More and Less Skilled Coworkers
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Sorting of Human Capital with Firm Characteristics

1. Sorting with firm productivity z mirrors coworker composition:

I For low h, production complementarities induce positive assortative matching with z

I For high h, incentive to train lower h coworkers outweighs the relative losses in production

→ training motive dominates and we see negative assortative matching with z

2. Sorting with firm learning environment q is positive

Joint Distributions
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Sorting of Learning Ability with Firm Characteristics

1. Sorting with firm productivity z is positive

2. No clear relationship with firm learning environment q

Joint Distributions



24/30

Statistical Decomposition of Learning

Use structural model to decompose variance of human capital growth:

Var

(
log

(
h′i
hi

))
= Var(log ai )︸ ︷︷ ︸

Learning Ability

+ Var(log qk)︸ ︷︷ ︸
Learning Environment

+

(
θ+

nk − 1

)2

Var

 ∑
j∈W+

i,k

log

(
hj
hi

)
︸ ︷︷ ︸

More Skilled Coworkers

+

(
θ−

nk − 1

)2

Var

 ∑
j∈W−i,k

log

(
hj
hi

)
︸ ︷︷ ︸

Less Skilled Coworkers

+ Covariance Terms

(3)



25/30

Statistical Decomposition of Learning

log ai log qi
θ+

nk−1

∑
j∈W+

i
log
(

hj
hi

)
θ−

nk−1

∑
j∈W−i

log
(

hj
hi

)
log ai 0.156 0.002 -0.112 -0.029
log qi 0.363 -0.011 0.002

θ+

nk−1

∑
j∈W+

i
log
(

hj
hi

)
0.525 0.072

θ−

nk−1

∑
j∈W−i

log
(

hj
hi

)
0.033

I Most variation in human capital growth is learning from more skilled coworkers (52.5%)

I Learning ability (15.6%) and learning environment (36.3%) are also important

I Negative sorting between a and learning potential from more skilled coworkers (-11.2%)
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Structural Decomposition of Learning

I Key parameters driving on-the-job learning are:

I σa: std of worker learning ability

I σq: std of firm learning environment

I (θ−, θ+): learning function parameters

I To quantify the relative importance of each, we turn them off one at a time (and together)

I Resolve the model, and compute statistics about the distributions of h and w

I Normalize baseline to 1, so interpretable as percent deviation
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Structural Decomposition of Learning: Individual Effects

Mean h Var h Mean w Var w

Individual
σq 1.050 0.646 1.093 1.615
σa 1.009 0.700 0.956 1.112

(θ−, θ+) 0.686 5.582 0.722 0.698

1. Shutting off learning leads to big decrease in mean h (31.4%) and mean w (27.8%)
no complementarities in learning removes negative sorting of high h → smaller effect on w than on h

2. Mean w decreases without learning ability (9.3%), but increases without learning
environment (4.4%)
q is an additional dimension of heterogeneity that firms can exploit in setting wages → firms with higher q

can pay lower w



28/30

Structural Decomposition of Learning: Cumulative Effects

Mean h Var h Mean w Var w

Cumulative
σa, σq 1.004 0.518 0.924 0.900

σa, σq, (θ
−, θ+) 0.858 2.564 0.861 0.904

1. Shutting off a and q jointly → modest 0.4% increase in mean h, but a larger 7.6%
decrease in mean w
This is because the learning ability channel dominates the learning environment channel

2. Shutting off all channels results in both lower h and w
This is because the learning function is the dominant source of wage growth
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Conclusion

I Developed novel model of large multi-worker firms, accommodating rich heterogeneity in
firm and worker characteristics

I Introduced complementarities in production and learning across workers in the firm

I Show how to solve such a model using recent advances in deep learning

I Calibrated model to French administrative data

I In preliminary calibration, the bulk of the variation in human capital and wages across
workers is driven by learning from more skilled coworkers

I Stay tuned: immigration counterfactual, more sorting results, and planner’s problem!
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Thank you!
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Back Matter
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The Firm State

I Firm state consists of (zk , qk) and the set of all the states of its workers:

I Let Wk be the set of all workers matched to a firm k

I Define the state of each worker as xi := (hi , ai ,wi )

I The firm’s workforce is Xk := {xi | i ∈ Wk}

I We define the firm state Sk := (zk , qk ,Xk)

I Helpful notation:

I Adding a worker to the firm: Sk ⊕ xi := (zk , qk ,Xk ∪ xi )

I Removing a worker from the firm: Sk 	 xi := (zk , qk ,Xk\xi )

Back
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Nonemployed Value

I Unmatched workers receive flow benefits proportional to b times their human capital level

I Take it or leave it offers mean worker values are unchanged when accepting a job out of
nonemployment

I Let U(hi ) denote the value of nonemployment

U(hi ) =
bhi

(ρ+ δr )

Note this is independent of learning ability ai

Back
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Bargaining Back

I Standard assumptions following Postel–Vinay and Robin (2002):

(A1) Wages conditional on worker states (hi , ai ) and incumbent firm states if poaching

(A2) Firms make counter-offers when rival firm attempts to hire one of their workers

(A3) Wages are take-it-or-leave-it offers

→ ensure the familiar sequential auctions bargaining solution, with bilaterally efficient matches

I Additional assumptions:

(A4) Wage contracts only renegotiated by mutual consent, at stochastic intervals
→ avoids firm simultaneously negotiating with multiple workers

(A5) When hiring and firing, firms maximize the joint value of the full coalition
→ abstracts away from incentive compatibility problems between firm and workers and aligns their

incentives (similar to Herkenhoff, Lise, Menzio, and Phillips 2024)

(A6) When either worker or firm can credibly threaten to end the match, the wage adjusts to the
closest boundary of the bargaining set
→ minimizes variance of wages and necessary when something could happen between renegotiation

events that pushes the worker outside the bounds (Hall 2005 and Thomas and Worrall 1988)
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Separation Policies

I Let V (Sk) denote the present value of a firm and all its matched workers

I Linear utility and counteroffers ⇒ wages are not allocative

I Define the surplus of the match between worker xi and firm Sk to be

∆(Sk , xi ) := V (Sk)− V (Sk 	 xi )− U(xi )

I There are three ways a match can terminate:

1. Renegotiation shock, if ∆(Sk , xi ) < 0

2. Worker is poached

→ Change in poaching firm’s value is B and depends on incumbent surplus and poacher surplus

→ We characterize this in a proposition Proposition

3. Exogenous match break shock δm

Back
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Proposition 1 (Separations)

When a worker j at firm p receives a poaching event with firm k 6= p, the increment to the
joint value is max{−∆(Sp, xj), 0}. The change in the poaching firm’s value net of their
payment to the worker is

B(Sk ,Sp, xj) = max {∆(Sk ⊕ xj , xj)−max {∆(Sp, xj), 0} , 0}

Intuition:

I In standard case, where the surplus is positive at both firms, poacher k:

I gets surplus ∆(Sk ⊕ xj , xj) from hiring worker j

I pays worker j the surplus ∆(Sp, xj) they would have gotten at firm p

I The max operators account for the fact that sometimes the surpluses are negative:

I outside max operator checks if poaching is efficient

I inside max operator checks if incumbent match should terminate

Back
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Distribution Definitions

1. χ(Sk) is the distribution of firms across states

2. χN(xi ) is the distribution of non-employed workers

3. χE (xj ,Sp(j)) is the distribution of workers across firms

4. Π(Sp) is the size weighted distribution of firm states

χE (Sk , xi ) is embedded within the distribution over firm states χ, since the worker states are included within the

firm states

Back to Joint Value Back to Equilibrium
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Quits and Poaching

1. When a renegotiation shock hits, either:

I The match isn’t terminated and any changes to wi don’t change V since it is a linear
transfer between the firm and the worker

I The surplus is negative and the worker quits to nonemployment

→ The match gets refunded the surplus −∆(Sk , xi )

2. When a poaching event occurs, either:

I Stay at incumbent firm and any change to wi does not change V

I Move to poaching firm

I New firm pays worker their marginal product at old firm

I Old firm loses that marginal product

→ Cancels out and change to V is 0

Back
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Joint Value

ρV (Sk) = F (Sk)︸ ︷︷ ︸
Flow output

− δf

(
V (Sk)−

∑
i∈Wk

U(xi )

)
︸ ︷︷ ︸

Firm Death

+ γE
[
V (H(Sk))− V (Sk)

]
︸ ︷︷ ︸

Learning

+ (nk + 1)ω

[
sN
∫

max {∆(Sk ⊕ xj , xj), 0} dχN(xj)︸ ︷︷ ︸
Meet Unmatched

+ sE
∫
B(Sk ,Sp(j), xj)dχE (xj ,Sp(j))︸ ︷︷ ︸

Meet Matched

]

+
∑
i∈Wk

(δr + δm)
[
V (Sk 	 xi )− V (Sk)

]
+ δmU(xi )︸ ︷︷ ︸

Match Breaks and Retirement

+
∑
i∈Wk

(λ+ ψE ) max {−∆(Sk , xi ), 0}︸ ︷︷ ︸
Quit Opportunities and Poaching

where:

I sN and sE are the shares of matches generated by employed and nonemployed workers

I ω is the (equilibrium) rate at which each firm employee generates matches for the firm

I χE and χN are the ergodic distributions for employed and nonemployed workers

Distribution Definitions Quits and Poaching Back
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Worker Value

I Define the worker value Wi (Sk) as NPV of wages of a worker i at firm k

I Value function is very messy to define but follows a similar structure HJB

I Accounts for same events, except:

I The effect of contacts with poaching firms does not drop out

I Handle wage negotiations when worker i receives a renegotiation shock, or meets a new firm

Renegotiation Poaching

I As in Lise and Robin (2017), W is not needed to characterize ergodic distribution χ
All of the real allocations fully characterized by V and χ

I Wages are not allocative: only need Wi (Sk) to back out the wages implied by the model

Back
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Equilibrium
A stationary equilibrium is:

1. a set of value functions {V ,U}

2. distributions {χ, χN}, and

3. a firm match rate ω

such that

1. the values solve the HJB equations conditional on the distributions

2. the distributions are stationary and consistent with the decisions implied by the values, and

3. the market for matches clears:

ω

∫
(1 + n(Sk))dχ(Sk)︸ ︷︷ ︸

meetings received by firms

= Nw

[
eψE + (1− e)ψN

]
︸ ︷︷ ︸
meetings generated by workers

Note: these distributions imply the shares of matches generated: sN = (1−e)ψN

eψE +(1−e)ψN and sE = eψE

eψE +(1−e)ψN

Distribution Definitions Back
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Worker Value
Back

ρWi (Sk ) = wi + γ
E
(
Wi (H(Sk ))−Wi (Sk )

)
︸ ︷︷ ︸

Learning

+ δf

(
U(xi )−Wi (Sk )

)
︸ ︷︷ ︸

Firm Death

+
∑

j 6=i∈Wk

(δr + δm)
(
Wi (Sk 	 xj )−Wi (Sk )

)
︸ ︷︷ ︸

Coworker Match Breaks and Retirement

+ (nk + 1)ωsE
∫ (

1
{
B(Sk , Sp(j), xj ) > 0

})(
Wi (Sk ⊕ xj )−Wi (Sk )

)
dχE (xj , Sp(j))︸ ︷︷ ︸

Potential new co-worker from employment

+ (nk + 1)ωsN
∫ (

1 {∆(Sk ⊕ xj , xj ) > 0}
)(

Wi (Sk ⊕ xj )−Wi (Sk )
)

dχN (xj )︸ ︷︷ ︸
Potential new co-worker from non-employment

+ λ
∑

j 6=i∈Wk

(
1 {∆(Sk , xj ) < 0}

)(
Wi (Sk 	 xj )−Wi (Sk )

)
︸ ︷︷ ︸

Coworker Quit Opportunities

+ ψ
E
∫ ∑

j 6=i∈Wk

1 {B(Sp, Sk , xj ) > 0}
(
Wi (S 	 xj )−Wi (Sk )

)
dΠ(Sp)

︸ ︷︷ ︸
Coworker Poacher Meetings

+ δm
(
U(xi )−Wi (Sk )

)
− δrWi (Sk )︸ ︷︷ ︸

Own Match Breaks and Retirement

+ λQi (Sk )︸ ︷︷ ︸
Own Renegotiation Shocks

+ψ
E
∫

Pi (Sk , Sp)dΠ(Sp)︸ ︷︷ ︸
Own Poacher Meetings



13/36

Renegotiation Logic
Back

Is the surplus negative:
∆(Sk , xi ) < 0?

U(xi )−Wi (Sk) Does the worker’s participation constraint bind:
Wi (Sk) < U(xi )?

U(xi )−Wi (Sk) Does the firm’s participation constraint bind:
Wi (Sk) > V (Sk)− V (Sk 	 xi )

V (Sk)− V (Sk 	 xi )−Wi (Sk) 0

Yes No

Yes No

Yes No
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Poaching Logic
Back

Is the surplus negative:
∆(Sk , xi ) < 0?

U(xi )−Wi (Sk) Will the worker leave:
∆(Sk , xi ) < ∆(Sp ⊕ xi , xi )?

∆(Sk , xi ) + U(xi )−Wi (Sk) Does the participation constraint hold:
Wi (Sk) > ∆(Sk , xi ) + U(xi )?

∆(Sk , xi ) + U(xi )−Wi (Sk) Is the poaching wage offer competitive:
Wi (Sk) < max{∆(Sp ⊕ xi , xi ), 0}+ U(xi )?

max{∆(Sp ⊕ xi , xi ), 0}+ U(xi )−Wi (Sk) 0

Yes No

Yes No

Yes No

Yes No
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Poaching Value Change
We define the cases:

Condition Description
C1 ∆(Sk , xi ) < 0 Surplus is negative
C2 ∆(Sk , xi ) < ∆(Sp ⊕ xi , xi ) Worker leaves for p
C3 Wi (Sk ) > ∆(Sk , xi ) + U(xi ) Firm participation constraint
C4 Wi (Sk ) < U(xi ) Worker participation constraint
C5 Wi (Sk ) < max {∆(Sp ⊕ xi , xi ), 0}+ U(xi ) Poacher offer is competitive

Proposition 2 (Poaching)

When a worker i at firm k receives a poaching event from firm p, Then the change in the worker i ’s value upon
receiving a poaching offer from p is given by:

Pi (Sk , Sp) =



U(xi )−Wi (Sk ) if C1,

∆(Sk , xi ) + U(xi )−Wi (Sk ) if ¬C1 and C2,

∆(Sk , xi ) + U(xi )−Wi (Sk ) if ¬C1,¬C2, and C3,

max {∆(Sp ⊕ xi , xi ), 0}+ U(xi )−Wi (Sk ) if ¬C1,¬C2,C4, and C5,

0 otherwise.

(4)

Back
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Neural Networks: Definition

– A neural network is a nonlinear function f : Rm → Rn that consists of interconnected
nodes, or neurons, organized into layers (input, hidden, outer).

– Simplest version has no hidden layers: each output k ∈ {1, 2, . . . , n} is

yk(x ,w) =
m∑
i=1

w0
i,kxi

– Add a (hidden) layer with p ∈ N nodes and activation function h:

yk(x ,w) =

p∑
j=1

w1
j,kh

( m∑
i=1

w0
i,jxi

)

– Can add as many layers (depth) and nodes (width) as we want

– Choice of activation functions is crucial and can be used to enforce constraints

Back NN:example NN:training NN:properties
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Neural Networks: Example
input
layer

two hidden layers output
layer

(a) Network diagram

x1

x2

a1
4

a1
3

a1
2

a1
1w0

1,1w0
1,1

w0
2,1w0
2,1

= h1(w0
1,1x1 + w0

2,1x2)

(b) Neuron

yk(x ,w) =
4∑

j2=1

w2
j2,k

a2
j2︷ ︸︸ ︷

h2

( 4∑
j1=1

w1
j1,j2 h1

( 2∑
i=1

w0
i,j1xi

)
︸ ︷︷ ︸

a1
j1

)
, k = 1, 2, 3

Back NN:definition NN:training NN:properties
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Neural Networks: Training

– Neural network weights are updated by minimizing a loss function

w∗ = arg min
w
L(x ;w)

– A commonly-used loss function is the mean squared error (MSE)

LMSE (x ;w) =
1

N

N∑
i=1

(ŷi − yi )
2

– In practice, the weights are updated using gradient descent,

wnew = w + η
∂L(x ;w)

∂w

– η ∈ R+ is the learning rate: not too small (flat spots), not too big (overshoot w∗)

Back NN:definition NN:example NN:properties
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Neural Networks: Properties

1. Universal approximation theorem (Hornik, Stinchcombe, and White 1989)

2. Can represent highly complex functions: kinks and ridges, binding constraints,
non-differentiabilities, discontinuities, and discrete choices

3. Bypass curse of dimensionality: number of weights to estimate scales linearly with
dimension of input

– 0 hidden layers: m × n

– 1 hidden layer: m × p + p × n

– 2 hidden layers: m × p1 + p1 × p2 + p2 × n

Series (e.g. Chebyshev or Hermite) scale exponentially

4. Training is fast and easy due to recent advances in computing

5. Deep reinforcement learning: solve dynamic programs without direct optimization

Back NN:definition NN:example NN:training
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Permutation Invariance

Proposition 3 (Kahou, Fernandez-Villaverde, Perla, and Sood 2022)

Let f : RN+1 → R be a continuous, permutation invariant function under SN , i.e, for all
(x ,X ) ∈ RN+1 and all π ∈ SN :

f (x , πX ) = f (x ,X )

Then there exist L ≤ N and continuous functions ρ : RL+1 → R and φ : R→ RL such that

f (x ,X ) = ρ

(
x ,

1

N

N∑
i=1

φ(Xi )

)
(5)

where Xi is the ith element of X .

Key Intuition: Permutation invariant functions can be represented as an average of a set of
“moments” generated by an inner neural network φ

I Similar in spirit to Krusell and Smith (1998)

I Moment selection is automatic, and we have stronger theoretical guarantees Back
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Occupation Codes in France

1 Farmers
2 Craftsmen, Tradespeople, and Business Owners
3 Executives and High-Level Professionals

31 Independent Professionals
311c Dentists
311d Psychologists and Therapists
311e Veterinarians
3121 Lawyers

34 Professors, Scientific Professionals
342b Research Professors
344a Hospital Doctors Without an Independent Practice
344c Residents in Medicine, Dentistry and Pharmacy
344d Salaried Pharmacists

37 Corporate Administrative and Commercial Managers
372e Legal Professionals
375a Advertising Executives

4 Intermediate Professions
5 Clerical Workers
6 Manual Laborers
9 Non-Coded

Back
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Self-flow Rates

Table: Self-Flow Rates

Rate (%)
OCC1 89.92
Firm 83.64
Establishment 79.16

Establishment × OCC1 74.11

Note: This table reports self-flow rates, the
empirical probability that a worker stays at the
same group from one year to the next. Calcu-
lated in the DADS-Postes from 2014 to 2015.

Back
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Initial Distributions

I Workers draw their initial human capital h0
i and their permanent learning ability ai from a

joint log normal distribution Gw (h0
i , ai ):(

log h0
i

log ai

)
∼ N

[(
µh

µa

)
,

(
σ2
h σ2

ha

σ2
ha σ2

a

)]

I We also assume a joint log normal process Gf (zk , qk):(
log zk
log qk

)
∼ N

[(
µz

µq

)
,

(
σ2
z σ2

zq

σ2
zq σ2

q

)]
Back
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Table: Externally-Calibrated Parameters

Description Value Explanation

δr Worker retirement rate 0.05 40 year career
λ Renegotiation shock arrival rate 1.0 Match data frequency
γE Learning event arrival rate 1.0 Match data frequency
ρ Annual discounting rate 0.05 Standard

µh Mean log initial human capital 0.0 Normalization
µz Mean log firm productivity 0.0 Normalization
µa Mean log worker learning ability 0.0 Normalization

Note: This table reports the externally-calibrated parameters and their source.

Back
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Learning Regression

We cannot directly observe human capital, but we do observe wages

→ Run an auxiliary regression in short-panel meant to closely mirror the learning function
(replace human capital with percentile ranks of wages):

wi,t − wi,t−1 = αk(i) + θ̃+
1

∑
j∈W+

i,t

wj,t−1 − wi,t−1

nk(i) − 1︸ ︷︷ ︸
Higher-Wage Coworkers

+ θ̃−1
∑

j∈W−i,t

wj,t−1 − wi,t−1

nk(i) − 1︸ ︷︷ ︸
Lower-Wage Coworkers

+ εi,t
(6)

where

I Regression coefficients (θ̃−, θ̃+) help target model analogues (θ−, θ+)

I Variance of fixed effects αk(i) (average wage growth within a firm) pins down σq

I RMSE targets σa

In practice, also add quadratic terms to help capture nonlinear effects
Back
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Calibration Results (Still rough and in progress!)

Description Value Target Data Model
Short panel
Nw Workers per firm 5.371 Average employer size (unweighted) 4.660 5.190
b Nonemployment flow value 0.141 p50 - p25 Wages 3.090 6.780
η Production elasticity 0.939 Between-firm wage variance share (rank) 0.843 0.463
µq Average Learning Environment -0.016 Mean wage rank change 1.819 3.737
σz Firm productivity variance 0.342 Correlation firm size vs. wage rank 0.038 0.164

σq Firm learning environment variance 0.013
Variance of firm mean wage rank change 54.773 70.098
Variance of αk(i) in Equation 6 34.409 67.962

σzq Firm learning-productivity covariance 0.013 Firm mean wage level-growth covariance 0.131 0.091
σh Initial worker human capital variance 0.157 p75 - p50 Wages 6.165 3.262

σa Worker learning ability variance 0.008
Wage rank change variance 73.354 174.555
Variance of εi,t in Equation 6 7.286 9.428

σha Worker learning-initial productivity covariance 6.505e-04 Worker wage level-growth covariance 0.109 -0.005

θ+ Learning from higher-ability coworkers 0.165 θ̃+
1 in Equation 6 0.340 0.384

θ̃+
2 in Equation 6 0.001 -0.003

θ− Learning from lower-ability coworkers 0.034 θ̃−1 in Equation 6 0.003 -0.002

θ̃−2 in Equation 6 0.000 -0.002
δf Employer death rate 0.001 P50 employer size 1 5
ψE Employed Contact Rate 1.048 P90 employer size 8 7

Long panel
δm Match break rate 0.127 EN rate 0.149 0.070
ψN Nonemployed Contact Rate 0.314 NE Rate 0.311 0.353

Inferred employment rate 0.733 0.823

Note: This table reports the internally-calibrated parameters and compares the relevant model-generated empirical
targets with those in the data. Unconditional moments are computed before the sample is restricted to stayers.
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Opportunities for Learning

I Low h workers are closer to their coworkers than high h workers

I Few learning opportunities for high h workers as they are much more skilled than their
coworkers
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Joint Distributions
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Joint Distributions
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Markdown Definition

The dynamic marginal product of a worker xi is the change in the joint value if the worker is
removed:

Ji (Sk) := V (Sk)− V (Sk 	 xi )

The markdown is the ratio of the worker’s value to the marginal product:

Wi (Sk)/Ji (Sk)
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Convergence V
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Convergence W
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Convergence χ
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