Learning on the Job

Jacob Adenbaum¹ Fil Babalievsky² William Jungerman³

¹University of Edinburgh ²Census Bureau ³UNC Chapel Hill

SAET: July 2025

Disclaimer: Any opinions and conclusions expressed herein are those of the authors and do not represent the views of the U.S. Census Bureau.

Introduction

Question: What are the determinants of on-the-job learning?

- First-order to study sorting, monopsony, and human capital accumulation
- Several potential sources:
 - Intrinsic own learning ability
 - Firm learning environment
 - Composition of coworkers
- Challenges:
 - 1. Human capital is not observable \rightarrow need a model
 - 2. Any model with all these features has historically been intractable

What we do

- ▶ Theory: Extend Postel–Vinay and Robin (2002) to accommodate
 - 1. Arbitrarily large multi-worker firms
 - 2. Rich two sided heterogeneity in firm and worker productivities and learning characteristics
 - 3. Complementarities in production and learning across workers
- Computation: Overcome curse of dimensionality by
 - Approximating key model objects with neural networks
 - Exploiting recent advances in deep learning
- ► Measurement: Calibrate to French matched employer-employee admin data (DADS)
 - Observe coworker composition for near-universe of French workers/firms
 - Detailed wage and hours data; granular occupation codes

What we do

- ▶ Theory: Extend Postel-Vinay and Robin (2002) to accommodate
 - 1. Arbitrarily large multi-worker firms
 - 2. Rich two sided heterogeneity in firm and worker productivities and learning characteristics
 - 3. Complementarities in production and learning across workers
- Computation: Overcome curse of dimensionality by
 - Approximating key model objects with neural networks
 - Exploiting recent advances in deep learning
- Measurement: Calibrate to French matched employer-employee admin data (DADS)
 - Observe coworker composition for near-universe of French workers/firms
 - Detailed wage and hours data; granular occupation codes

What we do

- ▶ Theory: Extend Postel–Vinay and Robin (2002) to accommodate
 - 1. Arbitrarily large multi-worker firms
 - 2. Rich two sided heterogeneity in firm and worker productivities and learning characteristics
 - 3. Complementarities in production and learning across workers
- Computation: Overcome curse of dimensionality by
 - Approximating key model objects with neural networks
 - Exploiting recent advances in deep learning
- ▶ Measurement: Calibrate to French matched employer-employee admin data (DADS)
 - Observe coworker composition for near-universe of French workers/firms
 - Detailed wage and hours data; granular occupation codes

What we find

- ▶ Learning: Learning from more skilled coworkers is dominant source of learning on the job
 - Accounts for more than 50% of the variance in human capital growth rates
 - Remainder split between learning ability (1/3) and firm effects (2/3)
 - Switching off learning from coworkers decreases human capital and wages 25%
- ► Two key sorting motives
 - Production complementarities (worker/firm and worker/coworkers) induce positive assortative matching
 - 2. Learning complementarities (worker/coworkers) induce negative assortative matching
 - ightarrow production motive dominant for low human capital workers
 - → training motive dominates production gains at high human capital levels

What we find

- ▶ Learning: Learning from more skilled coworkers is dominant source of learning on the job
 - Accounts for more than 50% of the variance in human capital growth rates
 - Remainder split between learning ability (1/3) and firm effects (2/3)
 - Switching off learning from coworkers decreases human capital and wages 25%
- ► Two key sorting motives:
 - Production complementarities (worker/firm and worker/coworkers) induce positive assortative matching
 - 2. Learning complementarities (worker/coworkers) induce negative assortative matching
 - ightarrow production motive dominant for low human capital workers
 - ightarrow training motive dominates production gains at high human capital levels

Related Literature

▶ Peer Effects in Labor Markets: Jarosch, Oberfield, and Rossi-Hansberg (2021), Freund (2024), Herkenhoff, Lise, Menzio, and Phillips (2024), Ma, Nakab, and Vidart (2024)

Contribution:

- 1. Whole distribution of coworkers matters for learning and wages
- 2. Much richer patterns of sorting and selection

► Machine Learning in Economics:

- Methods Papers: Maliar, Maliar, and Winant (2021), Kahou, Fernandez-Villaverde, Perla, and Sood (2022), Azinovic, Gaegauf, and Scheidegger (2022), Duarte, Duarte, and Silva (2023)
- ► Applications: Duarte (2022), Jungerman (2023)

Contribution: heterogeneously sized state spaces

Model

Time is continuous (omit time subscripts) , populated by a continuum of workers and firms:

Workers Firms $\in [0, N_w]$ Indexed by $k \in [0, 1]$

- ightharpoonup Linear preferences, discount rate ρ
- Heterogeneous in
 - General human capital h
 - 2. Fixed learning ability a
- Workers "retire" at rate δ_r , replaced with draws from G_w
- New workers start unmatched

- ightharpoonup Linear preferences, discount rate ho
- Heterogeneous in
 - 1. Fixed productivity z₀
 - 2. Fixed learning environment q_k
- Firms die at rate δ_f, replaced with draws from G_f
- New firms start unmatched
- \triangleright Firms consist of n_k matched workers

Time is continuous (omit time subscripts) , populated by a continuum of workers and firms:

Workers

- ▶ Indexed by $i \in [0, N_w]$
- Linear preferences, discount rate ρ
- ► Heterogeneous in
 - 1. General human capital hi
 - Fixed learning ability a,
- Morkers "retire" at rate δ_r , replaced with draws from G_w
- New workers start unmatched

- ▶ Indexed by $k \in [0,1]$
- Linear preferences, discount rate ρ
- Heterogeneous in
 - 1. Fixed productivity z
 - 2. Fixed learning environment q_k
- Firms die at rate δ_f , replaced with draws from G_f
- New firms start unmatched
- \triangleright Firms consist of n_k matched workers

Time is continuous (omit time subscripts) , populated by a continuum of workers and firms:

Workers

- ▶ Indexed by $i \in [0, N_w]$
- \triangleright Linear preferences, discount rate ρ
- ► Heterogeneous in
 - 1. General human capital h_i
 - 2. Fixed learning ability a_i
- Morkers "retire" at rate δ_r , replaced with draws from G_w
- New workers start unmatched

- ▶ Indexed by $k \in [0,1]$
- ightharpoonup Linear preferences, discount rate ρ
- Heterogeneous in
 - 1. Fixed productivity z
 - 2. Fixed learning environment q_k
- Firms die at rate δ_f , replaced with draws from G_f
- ► New firms start unmatched
- \triangleright Firms consist of n_k matched workers

Time is continuous (omit time subscripts) , populated by a continuum of workers and firms:

Workers

- ▶ Indexed by $i \in [0, N_w]$
- ightharpoonup Linear preferences, discount rate ρ
- Heterogeneous in
 - 1. General human capital h_i
 - 2. Fixed learning ability a_i
- Morkers "retire" at rate δ_r , replaced with draws from G_w
- New workers start unmatched

- ▶ Indexed by $k \in [0,1]$
- \triangleright Linear preferences, discount rate ρ
- Heterogeneous in
 - 1. Fixed productivity z_k
 - 2. Fixed learning environment q_k
- Firms die at rate δ_f , replaced with draws from G_f
- ► New firms start unmatched
- \triangleright Firms consist of n_k matched workers

Time is continuous (omit time subscripts), populated by a continuum of workers and firms:

Workers

- ▶ Indexed by $i \in [0, N_w]$
- ightharpoonup Linear preferences, discount rate ho
- ► Heterogeneous in
 - 1. General human capital h_i
 - 2. Fixed learning ability a_i
- Norkers "retire" at rate δ_r , replaced with draws from G_w
- New workers start unmatched

- ▶ Indexed by $k \in [0,1]$
- ightharpoonup Linear preferences, discount rate ρ
- Heterogeneous in
 - 1. Fixed productivity z_k
 - 2. Fixed learning environment q_k
- Firms die at rate δ_f , replaced with draws from G_f
- New firms start unmatched
- \triangleright Firms consist of n_k matched workers

Time is continuous (omit time subscripts), populated by a continuum of workers and firms:

Workers

- ▶ Indexed by $i \in [0, N_w]$
- ightharpoonup Linear preferences, discount rate ho
- Heterogeneous in
 - 1. General human capital h_i
 - 2. Fixed learning ability a_i
- Norkers "retire" at rate δ_r , replaced with draws from G_w
- New workers start unmatched

- ▶ Indexed by $k \in [0,1]$
- ightharpoonup Linear preferences, discount rate ρ
- Heterogeneous in
 - 1. Fixed productivity z_k
 - 2. Fixed learning environment q_k
- Firms die at rate δ_f , replaced with draws from G_f
- New firms start unmatched
- \triangleright Firms consist of n_k matched workers

Technology

Augment Postel-Vinay and Robin (2002) to add complementarities in two ways:

1. Production: Output produced according to a CES:

$$F(\underbrace{z_k, q_k, X_k}) := z_k \left(\sum_i h_i^{\eta} \right)^{\frac{1}{\eta}} \tag{1}$$

where

- $ightharpoonup \eta$ controls the elasticity of substitution between workers
- Can accommodate both supermodular and submodular production functions
- 2. Learning: Extend Jarosch, Oberfield, and Rossi-Hansberg (2021):

$$\log\left(\frac{h_i'}{h_i}\right) = \log a_i + \log q_k + \underbrace{\frac{\theta^+}{n_k - 1} \sum_{j \mid h_j > h_i} \log\left(\frac{h_j}{h_i}\right)}_{} + \underbrace{\frac{\theta^-}{n_k - 1} \sum_{j \mid h_j < h_i} \log\left(\frac{h_j}{h_i}\right)}_{}$$
(2)

Effect of More Skilled Workers

Firm State Nonemployed

Technology

Augment Postel-Vinay and Robin (2002) to add complementarities in two ways:

1. **Production:** Output produced according to a CES:

$$F(\underbrace{z_k, q_k, X_k}) := z_k \left(\sum_i h_i^{\eta} \right)^{\frac{1}{\eta}} \tag{1}$$

where

- \triangleright η controls the elasticity of substitution between workers
- Can accommodate both supermodular and submodular production functions
- 2. Learning: Extend Jarosch, Oberfield, and Rossi-Hansberg (2021):

$$\log\left(\frac{h_i'}{h_i}\right) = \log a_i + \log q_k + \underbrace{\frac{\theta^+}{n_k - 1} \sum_{j \mid h_j > h_i} \log\left(\frac{h_j}{h_i}\right)}_{\text{Effect of More Skilled Workers}} + \underbrace{\frac{\theta^-}{n_k - 1} \sum_{j \mid h_j < h_i} \log\left(\frac{h_j}{h_i}\right)}_{\text{Effect of Less Skilled Workers}}$$
(2)

→ **Implication:** values are not separable across matches

Firm State Nonemployed

Meetings and Matches

- Workers and firms match in a frictional labor market
- **Technology:** each worker generates meetings at rate ψ^N if unmatched or ψ^E if matched
 - ▶ Meetings are allocated uniformly to workers, proportional to match generation
 - ▶ Meetings are allocated to firms proportional to firm size
 - ightarrow for Gibrat's law, otherwise large firms could not grow as fast (in proportional terms) as small firms Note: we assume firms born with 1 "manager" so they can match
 - ► Analogous to balanced matching as in Burdett and Vishwanath (1988)
- ightharpoonup Firms and workers may agree on a wage w_i and form a match
- Standard bargaining assumptions following Postel-Vinay and Robin (2002)
 - ightarrow ensure the familiar sequential auctions bargaining solution, with bilaterally efficient matches
- Additional assumptions to deal with large multi-worker firms
 - ightarrow avoids thinking about simultaneously negotiating with multiple workers within a firm

Meetings and Matches

- Workers and firms match in a frictional labor market
- **Technology:** each worker generates meetings at rate ψ^N if unmatched or ψ^E if matched
 - ▶ Meetings are allocated uniformly to workers, proportional to match generation
 - ▶ Meetings are allocated to firms proportional to firm size
 - ightarrow for Gibrat's law, otherwise large firms could not grow as fast (in proportional terms) as small firms Note: we assume firms born with 1 "manager" so they can match
 - ► Analogous to balanced matching as in Burdett and Vishwanath (1988)
- \triangleright Firms and workers may agree on a wage w_i and form a match
- Standard bargaining assumptions following Postel-Vinay and Robin (2002)
 - ightarrow ensure the familiar sequential auctions bargaining solution, with bilaterally efficient matches
- ▶ Additional assumptions to deal with large multi-worker firms
 - ightarrow avoids thinking about simultaneously negotiating with multiple workers within a firm

Separations and Values

- Matches can be terminated unilaterally, but only at stochastic intervals:
 - 1. Renegotiation shocks which occur at a rate λ
 - → avoids multilateral negotiations, but means some matches can persist with negative surplus
 - 2. When the worker meets another firm (at a rate ψ^{E})
- Matches can also exogenously separate at rate \(\delta_m \)

Separation Policies

- Rest of model:
 - 1. Joint value $V(S_k)$ PDV of flow payments to all coalition members

Joint Value

2. Worker value $W_i(S_k)$

Worker Value

3. Ergodic distribution χ

Equilibrium

Computation

Computational Algorithm

Since wages are **not allocative**, we can proceed in two steps:

- 1. Solve for joint value V and ergodic distribution χ jointly:
 - Iterate training (updating) V and simulating to approximate χ until jointly converged
 - Key observation: We don't need wages at all for this step
 - ► Challenge: very high-dimensional heterogeneously-sized state space

 Number of states of a firm with *n* workers is proportional to *n*
- 2. Solving for worker value W
 - **Key observation:** HJB for W is more complicated than V, but we already have χ
 - ightharpoonup After solving for W, can back out wages along simulation path

Computational Algorithm

Since wages are **not allocative**, we can proceed in two steps:

- 1. Solve for joint value V and ergodic distribution χ jointly:
 - Iterate training (updating) V and simulating to approximate χ until jointly converged
 - Key observation: We don't need wages at all for this step
 - ► Challenge: very high-dimensional heterogeneously-sized state space

 Number of states of a firm with *n* workers is proportional to *n*
- 2. Solving for worker value *W*:
 - **Key observation:** HJB for W is more complicated than V, but we already have χ
 - ightharpoonup After solving for W, can back out wages along simulation path

Neural Networks are Function Approximators

- ► Challenges: Curse of dimensionality and heterogeneously sized state spaces
- ► **Solution:** approximate *V* and *W* with neural networks
- Neural Networks are highly parameterized function approximators with three key features:
 - 1. Universal approximation theorem (Hornik, Stinchcombe, and White 1989)
 - Number of parameters required does not depend on dimension of state space (increases exponentially for polynomials)
 - Asymptotics: approximation error falls with 1/M where M is number of parameters ($1/M^D$ for polynomials)
 - Differentiable and easy to "train"
 Easy to exploit state-of-the-art libraries and algorithms
 - Definition Example Training Properties
- ► Highly effective at solving high dimensional dynamic programs (Maliar, Maliar, and Winant 2021, Azinovic, Gaegauf, and Scheidegger 2022)
- ► With appropriate architectures, can handle set valued states (Permutation Invariance)

Neural Networks are Function Approximators

- ► Challenges: Curse of dimensionality and heterogeneously sized state spaces
- ► Solution: approximate *V* and *W* with neural networks
- ▶ Neural Networks are highly parameterized function approximators with three key features:
 - 1. Universal approximation theorem (Hornik, Stinchcombe, and White 1989)
 - Number of parameters required does not depend on dimension of state space (increases exponentially for polynomials)

Asymptotics: approximation error falls with 1/M where M is number of parameters ($1/M^D$ for polynomials)

Differentiable and easy to "train"
 Easy to exploit state-of-the-art libraries and algorithms

- ► Highly effective at solving high dimensional dynamic programs (Maliar, Maliar, and Winant 2021, Azinovic, Gaegauf, and Scheidegger 2022)
- ► With appropriate architectures, can handle set valued states Permutation Invariance

Defining the Loss Function

- ightharpoonup Assume a NN approximation parameterized by θ_V
- ▶ Need to define a loss function to "train" the neural network to minimize

$$\mathcal{L}_V(\theta_V) := \int R_V(S_k; \theta_V)^2 d\Omega(S_k)$$

- $ightharpoonup R_V(S_k; \theta_V)$ is the residual of the joint value HJB evaluated at S_k
- $ightharpoonup \Omega$ is a distribution over states (in principle, any measure would do)
- In practice, we want one that prioritizes accuracy in the states we care about

A natural choice is χ , but want good approximation on states off equilibrium \rightarrow synthetic distribution that augments χ with all states reachable within a single eve

- lacktriangle We train $heta_V$ by **stochastic gradient descent** on batches sampled from Ω
 - ▶ Works well with Monte Carlo approximations of integrals in HJB

We find accurate enough with 50-100 draws for each integral

Solves HJBs to reasonable degree of accuracy (L^2 errors $< 10^{-5}$) in 25 minutes on a GPU

Defining the Loss Function

- ightharpoonup Assume a NN approximation parameterized by θ_V
- ▶ Need to define a loss function to "train" the neural network to minimize

$$\mathcal{L}_V(heta_V) := \int R_V(S_k; heta_V)^2 \mathrm{d}\Omega(S_k)$$

- $ightharpoonup R_V(S_k; \theta_V)$ is the residual of the joint value HJB evaluated at S_k
- $ightharpoonup \Omega$ is a distribution over states (in principle, any measure would do)
- ▶ In practice, we want one that prioritizes accuracy in the states we care about

A natural choice is χ , but want good approximation on states off equilibrium

- ightarrow synthetic distribution that augments χ with all states reachable within a single event from χ
- We train θ_V by stochastic gradient descent on batches sampled from Ω
 - ► Works well with Monte Carlo approximations of integrals in HJB

We find accurate enough with 50-100 draws for each integral

Solves HJBs to reasonable degree of accuracy (L^2 errors $< 10^{-5}$) in 25 minutes on a GPU Can achieve higher accuracy with more computation time (V Convergence) (V Convergence)

Defining the Loss Function

- Assume a NN approximation parameterized by θ_V
- Need to define a loss function to "train" the neural network to minimize

$$\mathcal{L}_V(heta_V) := \int R_V(S_k; heta_V)^2 \mathrm{d}\Omega(S_k)$$

- $ightharpoonup R_V(S_k; \theta_V)$ is the residual of the joint value HJB evaluated at S_k
- $ightharpoonup \Omega$ is a distribution over states (in principle, any measure would do)
- In practice, we want one that prioritizes accuracy in the states we care about

A natural choice is χ , but want good approximation on states off equilibrium

- \rightarrow synthetic distribution that augments χ with all states reachable within a single event from χ
- \blacktriangleright We train θ_V by stochastic gradient descent on batches sampled from Ω
 - Works well with Monte Carlo approximations of integrals in HJB

We find accurate enough with 50-100 draws for each integral

▶ Solves HJBs to reasonable degree of accuracy (L^2 errors $< 10^{-5}$) in 25 minutes on a GPU

Can achieve higher accuracy with more computation time V Convergence

Measurement

Data

- ► French matched employer-employee administrative data
- ► Constructed using mandatory form all businesses must submit every year (DADS)
- ► Two main datasets:
 - 1. Short panel: near-universe of workers, but overlapping structure (IDs reshuffled)
 - observe full universe of workers and coworkers
 - use this for descriptive evidence and main estimation targets
 - 2. Long panel: full employment history of people born in October
 - use this for flow rates and measuring nonemployment
- ► Key variables: wages, hours, establishment, occupation, demographics
- ▶ What we don't have: worker education

Defining a team

- ► Key decision: how do we define a team?
 - ► Too narrow → omit relevant coworkers
 - ► Too broad → include coworkers you never interact with
- Our approach: teams are set of coworkers at the establishment within same 1-digit occupation
 - Want to be conservative in not excluding relevant interactions
 - Ex: 2-digit occupation would separately categorize "Lawyers" from "Legal Professionals"
 - Ex: 4-digit occupation would separately categorize "Medical Residents" from "Hospital Doctors without an Independent Practice"

Calibration Strategy

► External:

- Retirement rate, discounting set exogenously
- Learning and renegotiation shocks set for expected waiting time of 1 year
- ► Normalize non-separable means to zero

Externally Set

- ► Internally calibrate remaining parameters by indirect inference:
 - 1. Variances, covariances of wage growth to match initial distributions
 - 2. Labor market flows to match arrival rates of shocks
 - 3. Within/between firm variance decomposition to match η

See Herkenhoff, Lise, Menzio, and Phillips (2024)

4. Auxiliary regression to target learning function parameters Auxiliary Regression

Parameter Estimates

Results

Drivers of Sorting

Sorting patterns depend on **production** and **learning** complementarities:

- 1. Complementarities in production b/w worker and firm productivities (h, z)
 - → motive for positive assortative matching
- 2. Complementarities in production between workers within a firm
 - ho $\eta = 0.939 < 1$ so production function is supermodular
 - ightarrow another motive for positive assortative matching
- Complementarities in learning between workers
 - A worker *training* their coworkers is more valuable when gap to coworkers is larger
 - → motive for negative assortative matching

Drivers of Sorting

Sorting patterns depend on **production** and **learning** complementarities:

- 1. Complementarities in production b/w worker and firm productivities (h, z)
 - → motive for positive assortative matching
- 2. Complementarities in production between workers within a firm
 - ho $\eta = 0.939 < 1$ so production function is supermodular
 - → another motive for positive assortative matching
- Complementarities in learning between workers
 - A worker training their coworkers is more valuable when gap to coworkers is larger
 - → motive for negative assortative matching

Drivers of Sorting

Sorting patterns depend on **production** and **learning** complementarities:

- 1. Complementarities in production b/w worker and firm productivities (h, z)
 - → motive for positive assortative matching
- 2. Complementarities in production between workers within a firm
 - ho $\eta = 0.939 < 1$ so production function is supermodular
 - → another motive for positive assortative matching
- 3. Complementarities in learning between workers
 - A worker training their coworkers is more valuable when gap to coworkers is larger
 - \rightarrow motive for negative assortative matching

Sorting along coworkers: low-skill learn, high-skill teach

Sorting of Human Capital with Firm Characteristics

- 1. Sorting with firm productivity z mirrors coworker composition:
 - \triangleright For low h, production complementarities induce positive assortative matching with z
 - \triangleright For high h, incentive to train lower h coworkers outweighs the relative losses in production
 - ightarrow training motive dominates and we see <code>negative</code> assortative matching with z
- 2. Sorting with firm learning environment q is positive

Sorting of Learning Ability with Firm Characteristics

- 1. Sorting with firm productivity z is positive
- 2. No clear relationship with firm learning environment q

Statistical Decomposition of Learning

Use structural model to decompose variance of human capital growth:

$$\mathsf{Var}\left(\mathsf{log}\left(\frac{h_i'}{h_i}\right)\right) = \underbrace{\mathsf{Var}(\mathsf{log}\,a_i)}_{\mathsf{Learning}\,\mathsf{Ability}} + \underbrace{\underbrace{\mathsf{Var}(\mathsf{log}\,q_k)}_{\mathsf{Learning}\,\mathsf{Environment}}}_{\mathsf{Learning}\,\mathsf{Environment}} + \underbrace{\left(\frac{\theta^+}{n_k-1}\right)^2\mathsf{Var}\left(\sum_{j\in\mathcal{W}_{i,k}^+}\mathsf{log}\left(\frac{h_j}{h_i}\right)\right)}_{\mathsf{More}\,\mathsf{Skilled}\,\mathsf{Coworkers}} + \underbrace{\left(\frac{\theta^-}{n_k-1}\right)^2\mathsf{Var}\left(\sum_{j\in\mathcal{W}_{i,k}^-}\mathsf{log}\left(\frac{h_j}{h_i}\right)\right)}_{\mathsf{Less}\,\mathsf{Skilled}\,\mathsf{Coworkers}} + \mathsf{Covariance}\,\mathsf{Terms}$$

(3)

Statistical Decomposition of Learning

	log a _i	$\log q_i$	$\frac{\theta^+}{n_k-1}\sum_{j\in\mathcal{W}_i^+}\log\left(\frac{h_j}{h_i}\right)$	$\frac{\theta^{-}}{n_{k}-1}\sum_{j\in\mathcal{W}_{i}^{-}}\log\left(\frac{h_{j}}{h_{i}}\right)$
log a _i	0.156	0.002	-0.112	-0.029
$\log q_i$		0.363	-0.011	0.002
$rac{ heta^+}{n_k-1}\sum_{j\in\mathcal{W}_i^+}\log\left(rac{h_j}{h_i} ight)$			0.525	0.072
$rac{ heta^+}{n_k-1}\sum_{j\in\mathcal{W}_i^+}\log\left(rac{h_i}{h_i} ight) \ rac{ heta^-}{n_k-1}\sum_{j\in\mathcal{W}_i^-}\log\left(rac{h_j}{h_i} ight)$				0.033

- ▶ Most variation in human capital growth is learning from more skilled coworkers (52.5%)
- ▶ Learning ability (15.6%) and learning environment (36.3%) are also important
- ▶ Negative sorting between a and learning potential from more skilled coworkers (-11.2%)

Structural Decomposition of Learning

- ► Key parameters driving on-the-job learning are:
 - $ightharpoonup \sigma_a$: std of worker learning ability
 - $ightharpoonup \sigma_q$: std of firm learning environment
 - (θ^-, θ^+) : learning function parameters
- ▶ To quantify the relative importance of each, we turn them off one at a time (and together)
- ightharpoonup Resolve the model, and compute statistics about the distributions of h and w
- ▶ Normalize baseline to 1, so interpretable as percent deviation

Structural Decomposition of Learning: Individual Effects

		Mean <i>h</i>	Var h	Mean w	Var w
	σ_{q}	1.050	0.646	1.093	1.615
Individual	σ_{a}	1.009	0.700	0.956	1.112
	$(heta^-, heta^+)$	0.686	5.582	0.722	0.698

- 1. Shutting off learning leads to big decrease in mean h (31.4%) and mean w (27.8%) no complementarities in learning removes negative sorting of high $h \to \text{smaller}$ effect on w than on h
- 2. Mean w decreases without learning ability (9.3%), but increases without learning environment (4.4%)
 - q is an additional dimension of heterogeneity that firms can exploit in setting wages \rightarrow firms with higher q can pay lower w

Structural Decomposition of Learning: Cumulative Effects

		Mean <i>h</i>	Var <i>h</i>	Mean w	Var w
Cumulative	σ_{a},σ_{q}	1.004	0.518	0.924	0.900
	$\sigma_{a}, \sigma_{q}, (\theta^{-}, \theta^{+})$	0.858	2.564	0.861	0.904

1. Shutting off a and q jointly \rightarrow modest 0.4% increase in mean h, but a larger 7.6% decrease in mean w

This is because the learning ability channel dominates the learning environment channel

2. Shutting off all channels results in both lower h and w

This is because the learning function is the dominant source of wage growth

Conclusion

- Developed novel model of large multi-worker firms, accommodating rich heterogeneity in firm and worker characteristics
- ▶ Introduced complementarities in production and learning across workers in the firm
- Show how to solve such a model using recent advances in deep learning
- Calibrated model to French administrative data
- In preliminary calibration, the bulk of the variation in human capital and wages across workers is driven by learning from more skilled coworkers
- ▶ Stay tuned: immigration counterfactual, more sorting results, and planner's problem!

Thank you!

Back Matter

The Firm State

- Firm state consists of (z_k, q_k) and the set of all the states of its workers:
 - Let W_k be the set of all workers matched to a firm k
 - ▶ Define the state of each worker as $\mathbf{x}_i := (h_i, a_i, w_i)$
 - ▶ The firm's workforce is $X_k := \{\mathbf{x}_i \mid i \in \mathcal{W}_k\}$
 - We define the firm state $S_k := (z_k, q_k, X_k)$
- Helpful notation:
 - ▶ Adding a worker to the firm: $S_k \oplus \mathbf{x}_i := (z_k, q_k, X_k \cup \mathbf{x}_i)$
 - ▶ Removing a worker from the firm: $S_k \ominus \mathbf{x}_i := (z_k, q_k, X_k \setminus \mathbf{x}_i)$

Nonemployed Value

- ▶ Unmatched workers receive flow benefits proportional to b times their human capital level
- ► Take it or leave it offers mean worker values are unchanged when accepting a job out of nonemployment
- ▶ Let $U(h_i)$ denote the value of nonemployment

$$U(h_i) = \frac{bh_i}{(\rho + \delta_r)}$$

Note this is independent of learning ability a_i

Bargaining Back

- ▶ **Standard** assumptions following Postel–Vinay and Robin (2002):
 - (A1) Wages conditional on worker states (h_i, a_i) and incumbent firm states if poaching
 - (A2) Firms make counter-offers when rival firm attempts to hire one of their workers
 - (A3) Wages are take-it-or-leave-it offers
 - ightarrow ensure the familiar sequential auctions bargaining solution, with bilaterally efficient matches
- Additional assumptions:
 - (A4) Wage contracts only renegotiated by mutual consent, at stochastic intervals → avoids firm simultaneously negotiating with multiple workers
 - (A5) When hiring and firing, firms maximize the joint value of the full coalition → abstracts away from incentive compatibility problems between firm and workers and aligns their incentives (similar to Herkenhoff, Lise, Menzio, and Phillips 2024)
 - (A6) When either worker or firm can credibly threaten to end the match, the wage adjusts to the closest boundary of the bargaining set
 - \rightarrow minimizes variance of wages and necessary when something could happen between renegotiation events that pushes the worker outside the bounds (Hall 2005 and Thomas and Worrall 1988)

- ▶ **Standard** assumptions following Postel–Vinay and Robin (2002):
 - (A1) Wages conditional on worker states (h_i, a_i) and incumbent firm states if poaching
 - (A2) Firms make counter-offers when rival firm attempts to hire one of their workers
 - (A3) Wages are take-it-or-leave-it offers
 - ightarrow ensure the familiar sequential auctions bargaining solution, with bilaterally efficient matches

Additional assumptions:

- (A4) Wage contracts only renegotiated by mutual consent, at stochastic intervals
 - \rightarrow avoids firm simultaneously negotiating with multiple workers
- (A5) When hiring and firing, firms maximize the joint value of the full coalition → abstracts away from incentive compatibility problems between firm and workers and aligns their incentives (similar to Herkenhoff, Lise, Menzio, and Phillips 2024)
- (A6) When either worker or firm can credibly threaten to end the match, the wage adjusts to the closest boundary of the bargaining set
 - → minimizes variance of wages and necessary when something could happen between renegotiation events that pushes the worker outside the bounds (Hall 2005 and Thomas and Worrall 1988)

Bargaining Back

- ▶ **Standard** assumptions following Postel–Vinay and Robin (2002):
 - (A1) Wages conditional on worker states (h_i, a_i) and incumbent firm states if poaching
 - (A2) Firms make counter-offers when rival firm attempts to hire one of their workers
 - (A3) Wages are take-it-or-leave-it offers
 - ightarrow ensure the familiar sequential auctions bargaining solution, with bilaterally efficient matches

Additional assumptions:

- (A4) Wage contracts only renegotiated by mutual consent, at stochastic intervals

 → avoids firm simultaneously negotiating with multiple workers
- (A5) When hiring and firing, firms maximize the joint value of the full coalition → abstracts away from incentive compatibility problems between firm and workers and aligns their incentives (similar to Herkenhoff, Lise, Menzio, and Phillips 2024)
- (A6) When either worker or firm can credibly threaten to end the match, the wage adjusts to the closest boundary of the bargaining set
 - \rightarrow minimizes variance of wages and necessary when something could happen between renegotiation events that pushes the worker outside the bounds (Hall 2005 and Thomas and Worrall 1988)

Bargaining Back

- ▶ **Standard** assumptions following Postel–Vinay and Robin (2002):
 - (A1) Wages conditional on worker states (h_i, a_i) and incumbent firm states if poaching
 - (A2) Firms make counter-offers when rival firm attempts to hire one of their workers
 - (A3) Wages are take-it-or-leave-it offers
 - ightarrow ensure the familiar sequential auctions bargaining solution, with bilaterally efficient matches

Additional assumptions:

- (A4) Wage contracts only renegotiated by mutual consent, at stochastic intervals → avoids firm simultaneously negotiating with multiple workers
- (A5) When hiring and firing, firms maximize the joint value of the full coalition → abstracts away from incentive compatibility problems between firm and workers and aligns their incentives (similar to Herkenhoff, Lise, Menzio, and Phillips 2024)
- (A6) When either worker or firm can credibly threaten to end the match, the wage adjusts to the closest boundary of the bargaining set
 - \rightarrow minimizes variance of wages and necessary when something could happen between renegotiation events that pushes the worker outside the bounds (Hall 2005 and Thomas and Worrall 1988)

Separation Policies

- Let $V(S_k)$ denote the present value of a firm and all its matched workers
 - ▶ Linear utility and counteroffers ⇒ wages are not allocative
- \triangleright Define the surplus of the match between worker \mathbf{x}_i and firm S_k to be

$$\Delta(S_k,\mathbf{x}_i) := V(S_k) - V(S_k \ominus \mathbf{x}_i) - U(\mathbf{x}_i)$$

- ▶ There are three ways a match can terminate:
 - 1. Renegotiation shock, if $\Delta(S_k, \mathbf{x}_i) < 0$
 - 2. Worker is poached
 - ightarrow Change in poaching firm's value is ${\cal B}$ and depends on incumbent surplus and poacher surplus
 - → We characterize this in a proposition Proposition
 - 3. Exogenous match break shock δ_m

Proposition 1 (Separations)

When a worker j at firm p receives a poaching event with firm $k \neq p$, the increment to the joint value is $\max\{-\Delta(S_p, \mathbf{x}_j), 0\}$. The change in the poaching firm's value net of their payment to the worker is

$$\mathcal{B}(S_k, S_p, \mathbf{x}_j) = \max \left\{ \Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j) - \max \left\{ \Delta(S_p, \mathbf{x}_j), 0 \right\}, 0 \right\}$$

Intuition:

- ightharpoonup In standard case, where the surplus is positive at both firms, poacher k:
 - ▶ gets surplus $\Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j)$ from hiring worker j
 - **>** pays worker j the surplus $\Delta(S_p, \mathbf{x}_j)$ they would have gotten at firm p
- ▶ The max operators account for the fact that sometimes the surpluses are negative:
 - outside max operator checks if poaching is efficient
 - inside max operator checks if incumbent match should terminate

Distribution Definitions

- 1. $\chi(S_k)$ is the distribution of firms across states
- 2. $\chi^{N}(\mathbf{x}_{i})$ is the distribution of non-employed workers
- 3. $\chi^{E}(\mathbf{x}_{j}, S_{p(j)})$ is the distribution of workers across firms
- 4. $\Pi(S_p)$ is the size weighted distribution of firm states

 $\chi^{E}(S_{k}, \mathbf{x}_{i})$ is embedded within the distribution over firm states χ , since the worker states are included within the firm states

Quits and Poaching

- 1. When a **renegotiation** shock hits, either:
 - ▶ The match isn't terminated and any changes to w_i don't change V since it is a linear transfer between the firm and the worker
 - ▶ The surplus is negative and the worker quits to nonemployment
 - ightarrow The match gets refunded the surplus $-\Delta(S_k,\mathbf{x}_i)$
- 2. When a **poaching** event occurs, either:
 - ightharpoonup Stay at incumbent firm and any change to w_i does not change V
 - ► Move to poaching firm
 - New firm pays worker their marginal product at old firm
 - Old firm loses that marginal product
 - \rightarrow Cancels out and change to V is 0

$$\rho V(S_k) = \underbrace{F(S_k)}_{\text{Flow output}} - \delta_f \left(V(S_k) - \sum_{i \in \mathcal{W}_k} U(\mathbf{x}_i) \right) + \gamma^E \left[V(H(S_k)) - V(S_k) \right] \\ + (n_k + 1)\omega \left[\underbrace{s^N \int \max \left\{ \Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j), 0 \right\} d\chi^N(\mathbf{x}_j)}_{\text{Meet Unmatched}} + \underbrace{s^E \int \mathcal{B}(S_k, S_{\rho(j)}, \mathbf{x}_j) d\chi^E(\mathbf{x}_j, S_{\rho(j)})}_{\text{Meet Unmatched}} \right] \\ + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k) \right] + \delta_m U(\mathbf{x}_i)}_{\text{Match Breaks and Retirement}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\lambda + \psi^E) \max \left\{ -\Delta(S_k, \mathbf{x}_i), 0 \right\}}_{\text{Quit Opportunities and Poaching}}$$

- \triangleright s^N and s^E are the shares of matches generated by employed and nonemployed workers
- ightharpoonup is the (equilibrium) rate at which each firm employee generates matches for the firm
- \blacktriangleright χ^E and χ^N are the ergodic distributions for employed and nonemployed workers

$$\rho V(S_k) = \underbrace{F(S_k)}_{\text{Flow output}} - \underbrace{\delta_f \left(V(S_k) - \sum_{i \in \mathcal{W}_k} U(\mathbf{x}_i)\right)}_{\text{Firm Death}} + \gamma^E \Big[V(H(S_k)) - V(S_k)\Big]$$

$$+ (n_k + 1)\omega \left[\underbrace{s^N \int \max\left\{\Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j), 0\right\} d\chi^N(\mathbf{x}_j) + s^E \int \mathcal{B}(S_k, S_{\rho(j)}, \mathbf{x}_j) d\chi^E(\mathbf{x}_j, S_{\rho(j)})}_{\text{Meet Unmatched}} \right]$$

$$+ \sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \Big[V(S_k \ominus \mathbf{x}_i) - V(S_k)\Big] + \delta_m U(\mathbf{x}_i) + \sum_{i \in \mathcal{W}_k} (\lambda + \psi^E) \max\left\{-\Delta(S_k, \mathbf{x}_i), 0\right\}$$

$$\underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i) + \sum_{i \in \mathcal{W}_k} (\lambda + \psi^E) \max\left\{-\Delta(S_k, \mathbf{x}_i), 0\right\}}_{\text{Out Opportunities and Posching}}$$

- $ightharpoonup s^N$ and s^E are the shares of matches generated by employed and nonemployed workers
- ightharpoonup is the (equilibrium) rate at which each firm employee generates matches for the firm
- \blacktriangleright χ^E and χ^N are the ergodic distributions for employed and nonemployed workers

$$\rho V(S_k) = \underbrace{F(S_k)}_{\text{Flow output}} - \underbrace{\delta_f \left(V(S_k) - \sum_{i \in \mathcal{W}_k} U(\mathbf{x}_i)\right)}_{\text{Firm Death}} + \underbrace{\gamma^E \left[V(H(S_k)) - V(S_k)\right]}_{\text{Learning}} + (n_k + 1)\omega \left[\underbrace{s^N \int \max\left\{\Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j), 0\right\} d\chi^N(\mathbf{x}_j)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Matched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \oplus \mathbf{x}_i) - V(S_k)\right] + \delta_$$

- \triangleright s^N and s^E are the shares of matches generated by employed and nonemployed workers
- ightharpoonup ω is the (equilibrium) rate at which each firm employee generates matches for the firm
- $ightharpoonup \chi^{E}$ and χ^{N} are the ergodic distributions for employed and nonemployed workers

$$\rho V(S_k) = \underbrace{F(S_k)}_{\text{Flow output}} - \underbrace{\delta_f \left(V(S_k) - \sum_{i \in \mathcal{W}_k} U(\mathbf{x}_i)\right)}_{\text{Firm Death}} + \gamma^E \left[V(H(S_k)) - V(S_k)\right]$$

$$+ (n_k + 1)\omega \left[\underbrace{s^N \int \max\left\{\Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j), 0\right\} d\chi^N(\mathbf{x}_j)}_{\text{Meet Unmatched}} + \underbrace{s^E \int \mathcal{B}(S_k, S_{p(j)}, \mathbf{x}_j) d\chi^E(\mathbf{x}_j, S_{p(j)})}_{\text{Meet Unmatched}}\right]$$

$$+ \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right]}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m)}_{\text{$$

- \triangleright s^N and s^E are the shares of matches generated by employed and nonemployed workers
- ightharpoonup is the (equilibrium) rate at which each firm employee generates matches for the firm
- \blacktriangleright χ^E and χ^N are the ergodic distributions for employed and nonemployed workers

$$\rho V(S_k) = \underbrace{F(S_k)}_{\text{Flow output}} - \underbrace{\delta_f \left(V(S_k) - \sum_{i \in \mathcal{W}_k} U(\mathbf{x}_i)\right)}_{\text{Firm Death}} + \gamma^E \left[V(H(S_k)) - V(S_k)\right]$$

$$+ (n_k + 1)\omega \left[\underbrace{s^N \int \max\left\{\Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j), 0\right\} d\chi^N(\mathbf{x}_j)}_{\text{Meet Unmatched}} + \underbrace{s^E \int \mathcal{B}(S_k, S_{p(j)}, \mathbf{x}_j) d\chi^E(\mathbf{x}_j, S_{p(j)})}_{\text{Meet Unmatched}}\right]$$

$$+ \sum_{i \in \mathcal{W}_k} (\delta_r + \delta_m) \left[V(S_k \ominus \mathbf{x}_i) - V(S_k)\right] + \delta_m U(\mathbf{x}_i) + \sum_{i \in \mathcal{W}_k} (\lambda + \psi^E) \max\left\{-\Delta(S_k, \mathbf{x}_i), 0\right\}$$

$$\underbrace{\text{Match Breaks and Retirement}}_{\text{Match Breaks and Retirement}}$$

- \triangleright s^N and s^E are the shares of matches generated by employed and nonemployed workers
- ightharpoonup is the (equilibrium) rate at which each firm employee generates matches for the firm
- \blacktriangleright χ^E and χ^N are the ergodic distributions for employed and nonemployed workers

$$\rho V(S_k) = \underbrace{F(S_k)}_{\text{Flow output}} - \underbrace{\delta_f \left(V(S_k) - \sum_{i \in \mathcal{W}_k} U(\mathbf{x}_i)\right)}_{\text{Firm Death}} + \gamma^E \Big[V(H(S_k)) - V(S_k)\Big]$$

$$+ (n_k + 1)\omega \left[\underbrace{s^N \int \max\left\{\Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j), 0\right\} d\chi^N(\mathbf{x}_j)}_{\text{Meet Unmatched}} + \underbrace{\sum_{i \in \mathcal{W}_k} \left(\delta_r + \delta_m\right) \Big[V(S_k \ominus \mathbf{x}_i) - V(S_k)\Big] + \delta_m U(\mathbf{x}_i)}_{\text{Metch Breaks and Retirement}} + \underbrace{\sum_{i \in \mathcal{W}_k} \left(\lambda + \psi^E\right) \max\left\{-\Delta(S_k, \mathbf{x}_i), 0\right\}}_{\text{Quit Opportunities and Poaching}}$$

- \triangleright s^N and s^E are the shares of matches generated by employed and nonemployed workers
- lacktriangledown is the (equilibrium) rate at which each firm employee generates matches for the firm
- lacksquare and $\chi^{\it N}$ are the ergodic distributions for employed and nonemployed workers

Worker Value

- ▶ Define the worker value $W_i(S_k)$ as NPV of wages of a worker i at firm k
- ▶ Value function is very messy to define but follows a similar structure [□]
- Accounts for same events, except:
 - ▶ The effect of contacts with poaching firms does not drop out
 - ▶ Handle wage negotiations when worker *i* receives a renegotiation shock, or meets a new firm
 - Renegotiation Poaching
- As in Lise and Robin (2017), W is not needed to characterize ergodic distribution χ All of the real allocations fully characterized by V and χ
- \blacktriangleright Wages are not allocative: only need $W_i(S_k)$ to back out the wages implied by the model

Equilibrium

A **stationary** equilibrium is:

- 1. a set of value functions $\{V, U\}$
- 2. distributions $\{\chi, \chi^N\}$, and
- 3. a firm match rate ω

such that

- 1. the values solve the HJB equations conditional on the distributions
- 2. the distributions are stationary and consistent with the decisions implied by the values, and
- 3. the market for matches clears:

$$\underbrace{\omega \int (1 + n(S_k)) d\chi(S_k)}_{\text{meetings received by firms}} = \underbrace{N_w \left[e \psi^E + (1 - e) \psi^N \right]}_{\text{meetings generated by workers}}$$

Note: these distributions imply the shares of matches generated: $s^N = \frac{(1-e)\psi^N}{e\psi^E + (1-e)\psi^N}$ and $s^E = \frac{e\psi^E}{e\psi^E + (1-e)\psi^N}$

Worker Value

$$\rho W_i(S_k) = w_i + \underbrace{\gamma^E \left(W_i(H(S_k)) - W_i(S_k)\right)}_{\text{Learning}} + \underbrace{\delta_f \left(U(\mathbf{x}_i) - W_i(S_k)\right)}_{\text{Firm Death}} + \underbrace{\sum_{j \neq i \in \mathcal{W}_k} \left(\delta_r + \delta_m\right) \left(W_i(S_k \ominus \mathbf{x}_j) - W_i(S_k)\right)}_{\text{Coworker Match Breaks and Retirement}}$$

$$+ \underbrace{\left(n_k + 1\right) \omega s^E \int \left(\mathbbm{1} \left\{\mathcal{B}(S_k, S_{\rho(j)}, \mathbf{x}_j) > 0\right\}\right) \left(W_i(S_k \oplus \mathbf{x}_j) - W_i(S_k)\right) \mathrm{d}\chi^E(\mathbf{x}_j, S_{\rho(j)})}_{\text{Potential new co-worker from employment}}$$

$$+ \underbrace{\left(n_k + 1\right) \omega s^N \int \left(\mathbbm{1} \left\{\Delta(S_k \oplus \mathbf{x}_j, \mathbf{x}_j) > 0\right\}\right) \left(W_i(S_k \oplus \mathbf{x}_j) - W_i(S_k)\right) \mathrm{d}\chi^N(\mathbf{x}_j)}_{\text{Potential new co-worker from non-employment}}$$

$$+ \underbrace{\lambda \sum_{j \neq i \in \mathcal{W}_k} \left(\mathbbm{1} \left\{\Delta(S_k, \mathbf{x}_j) < 0\right\}\right) \left(W_i(S_k \ominus \mathbf{x}_j) - W_i(S_k)\right)}_{\text{Coworker Quit Opportunities}}$$

$$+ \underbrace{\psi^E \int \sum_{j \neq i \in \mathcal{W}_k} \mathbbm{1} \left\{\mathcal{B}(S_\rho, S_k, \mathbf{x}_j) > 0\right\} \left(W_i(S \ominus \mathbf{x}_j) - W_i(S_k)\right) \mathrm{d}\Pi(S_\rho)}_{\text{Coworker Poacher Meetings}}$$

$$+ \underbrace{\delta_m \left(U(\mathbf{x}_i) - W_i(S_k)\right) - \delta_r W_i(S_k)}_{\text{Own Match Breaks and Retirement}} + \underbrace{\lambda Q_i(S_k)}_{\text{Own Renegotiation Shocks}} + \underbrace{\psi^E \int P_i(S_k, S_\rho) \mathrm{d}\Pi(S_\rho)}_{\text{Own Poacher Meetings}}$$

Renegotiation Logic

Poaching Logic

■ Back

Poaching Value Change

We define the cases:

	Condition	Description
C_1	$\Delta(S_k, x_i) < 0$	Surplus is negative
C_2	$\Delta(S_k, x_i) < \Delta(S_p \oplus x_i, x_i)$	Worker leaves for p
C_3	$W_i(S_k) > \Delta(S_k, x_i) + U(x_i)$	Firm participation constraint
C_4	$W_i(S_k) < U(\mathbf{x}_i)$	Worker participation constraint
C_5	$W_i(S_k) < \max \{ \Delta(S_p \oplus \mathbf{x}_i, \mathbf{x}_i), 0 \} + U(\mathbf{x}_i)$	Poacher offer is competitive

Proposition 2 (Poaching)

When a worker i at firm k receives a poaching event from firm p, Then the change in the worker i's value upon receiving a poaching offer from p is given by:

$$P_{i}(S_{k}, S_{p}) = \begin{cases} U(\mathbf{x}_{i}) - W_{i}(S_{k}) & \text{if } C_{1}, \\ \Delta(S_{k}, \mathbf{x}_{i}) + U(\mathbf{x}_{i}) - W_{i}(S_{k}) & \text{if } \neg C_{1} \text{ and } C_{2}, \\ \Delta(S_{k}, \mathbf{x}_{i}) + U(\mathbf{x}_{i}) - W_{i}(S_{k}) & \text{if } \neg C_{1}, \neg C_{2}, \text{ and } C_{3}, \\ \max \{\Delta(S_{p} \oplus \mathbf{x}_{i}, \mathbf{x}_{i}), 0\} + U(\mathbf{x}_{i}) - W_{i}(S_{k}) & \text{if } \neg C_{1}, \neg C_{2}, C_{4}, \text{ and } C_{5}, \\ 0 & \text{otherwise.} \end{cases}$$
(4)

Neural Networks: Definition

- A neural network is a nonlinear function $f: \mathbb{R}^m \to \mathbb{R}^n$ that consists of interconnected nodes, or *neurons*, organized into *layers* (input, hidden, outer).
- Simplest version has no hidden layers: each output $k \in \{1, 2, ..., n\}$ is

$$y_k(x, w) = \sum_{i=1}^m w_{i,k}^0 x_i$$

− Add a (hidden) layer with $p \in \mathbb{N}$ nodes and activation function h:

$$y_k(x, w) = \sum_{j=1}^p w_{j,k}^1 h \left(\sum_{i=1}^m w_{i,j}^0 x_i \right)$$

- Can add as many layers (depth) and nodes (width) as we want
- Choice of activation functions is crucial and can be used to enforce constraints

NN:example

NN:training

NN:properties

Neural Networks: Example

Back

NN:definition

NN:training

NN:properties

Neural Networks: Training

- Neural network weights are updated by minimizing a loss function

$$w^* = \operatorname*{arg\,min}_{w} \mathcal{L}(x; w)$$

A commonly-used loss function is the mean squared error (MSE)

$$\mathcal{L}^{MSE}(x; w) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

In practice, the weights are updated using gradient descent,

$$w_{new} = w + \eta \frac{\partial \mathcal{L}(x; w)}{\partial w}$$

 $-\eta \in \mathbb{R}_+$ is the *learning rate*: not too small (flat spots), not too big (overshoot w^*)

Back

NN:definition

NN:example

NN:properties

Neural Networks: Properties

- 1. Universal approximation theorem (Hornik, Stinchcombe, and White 1989)
- 2. Can represent highly complex functions: kinks and ridges, binding constraints, non-differentiabilities, discontinuities, and discrete choices
- Bypass curse of dimensionality: number of weights to estimate scales linearly with dimension of input
 - 0 hidden layers: $m \times n$
 - 1 hidden layer: $m \times p + p \times n$
 - 2 hidden layers: $m \times p_1 + p_1 \times p_2 + p_2 \times n$

Series (e.g. Chebyshev or Hermite) scale exponentially

- 4. Training is fast and easy due to recent advances in computing
- 5. Deep reinforcement learning: solve dynamic programs without direct optimization

Permutation Invariance

Proposition 3 (Kahou, Fernandez-Villaverde, Perla, and Sood 2022)

Let $f: \mathbb{R}^{N+1} \to \mathbb{R}$ be a continuous, permutation invariant function under S_N , i.e, for all $(x, X) \in \mathbb{R}^{N+1}$ and all $\pi \in S_N$:

$$f(x,\pi X)=f(x,X)$$

Then there exist $L \leq N$ and continuous functions $\rho : \mathbb{R}^{L+1} \to \mathbb{R}$ and $\phi : \mathbb{R} \to \mathbb{R}^L$ such that

$$f(x,X) = \rho\left(x, \frac{1}{N} \sum_{i=1}^{N} \phi(X_i)\right)$$
 (5)

where X_i is the *i*th element of X.

Key Intuition: Permutation invariant functions can be represented as an average of a set of "moments" generated by an inner neural network ϕ

- ► Similar in spirit to Krusell and Smith (1998)
- Moment selection is automatic, and we have stronger theoretical guarantees

Occupation Codes in France

1			Farmers
2			Craftsmen, Tradespeople, and Business Owners
3			Executives and High-Level Professionals
	31		Independent Professionals
		311c	Dentists
		311d	Psychologists and Therapists
		311e	Veterinarians
		3121	Lawyers
	34		Professors, Scientific Professionals
		342b	Research Professors
		344a	Hospital Doctors Without an Independent Practice
		344c	Residents in Medicine, Dentistry and Pharmacy
		344d	Salaried Pharmacists
	37		Corporate Administrative and Commercial Managers
		372e	Legal Professionals
		375a	Advertising Executives
4			Intermediate Professions
5			Clerical Workers
6			Manual Laborers
9			Non-Coded

Self-flow Rates

Table: Self-Flow Rates

	Rate (%)
OCC1	89.92
Firm	83.64
Establishment	79.16
Establishment \times OCC1	74.11

Note: This table reports self-flow rates, the empirical probability that a worker stays at the same group from one year to the next. Calculated in the DADS-Postes from 2014 to 2015.

Initial Distributions

Workers draw their initial human capital h_i^0 and their permanent learning ability a_i from a joint log normal distribution $G_w(h_i^0, a_i)$:

$$\begin{pmatrix} \log h_i^0 \\ \log a_i \end{pmatrix} \sim \mathcal{N} \left[\begin{pmatrix} \mu_h \\ \mu_a \end{pmatrix}, \begin{pmatrix} \sigma_h^2 & \sigma_{ha}^2 \\ \sigma_{ha}^2 & \sigma_a^2 \end{pmatrix} \right]$$

▶ We also assume a joint log normal process $G_f(z_k, q_k)$:

$$\begin{pmatrix} \log z_k \\ \log q_k \end{pmatrix} \sim \mathcal{N} \left[\begin{pmatrix} \mu_z \\ \mu_q \end{pmatrix}, \begin{pmatrix} \sigma_z^2 & \sigma_{zq}^2 \\ \sigma_{zq}^2 & \sigma_q^2 \end{pmatrix} \right]$$

■ Back

Table: Externally-Calibrated Parameters

	Description	Value	Explanation
$\begin{array}{c} \delta_r \\ \lambda \\ \gamma^E \\ \rho \end{array}$	Worker retirement rate	0.05	40 year career
	Renegotiation shock arrival rate	1.0	Match data frequency
	Learning event arrival rate	1.0	Match data frequency
	Annual discounting rate	0.05	Standard
$\mu_{ extsf{h}} \ \mu_{ extsf{z}} \ \mu_{ extsf{a}}$	Mean log initial human capital	0.0	Normalization
	Mean log firm productivity	0.0	Normalization
	Mean log worker learning ability	0.0	Normalization

Note: This table reports the externally-calibrated parameters and their source.

Learning Regression

We cannot directly observe human capital, but we do observe wages

→ Run an auxiliary regression in short-panel meant to closely mirror the learning function (replace human capital with percentile ranks of wages):

$$w_{i,t} - w_{i,t-1} = \alpha_{k(i)} + \underbrace{\tilde{\theta}_{1}^{+} \sum_{j \in \mathbb{W}_{i,t}^{+}} \frac{w_{j,t-1} - w_{i,t-1}}{n_{k(i)} - 1}}_{\text{Higher-Wage Coworkers}} + \underbrace{\tilde{\theta}_{1}^{-} \sum_{j \in \mathbb{W}_{i,t}^{-}} \frac{w_{j,t-1} - w_{i,t-1}}{n_{k(i)} - 1}}_{\text{Lower-Wage Coworkers}} + \epsilon_{i,t}$$
(6)

where

- lacktriangle Regression coefficients $(\tilde{\theta}^-, \tilde{\theta}^+)$ help target model analogues (θ^-, θ^+)
- lacktriangle Variance of fixed effects $lpha_{k(i)}$ (average wage growth within a firm) pins down σ_q
- ightharpoonup RMSE targets σ_a

In practice, also add quadratic terms to help capture nonlinear effects

Calibration Results (Still rough and in progress!)

	Description	Value	Target	Data	Model
Short panel					
N _w	Workers per firm	5.371	Average employer size (unweighted)	4.660	5.190
Ь	Nonemployment flow value	0.141	p50 - p25 Wages	3.090	6.780
η	Production elasticity	0.939	Between-firm wage variance share (rank)	0.843	0.463
μ_q	Average Learning Environment	-0.016	Mean wage rank change	1.819	3.737
σ_z	Firm productivity variance	0.342	Correlation firm size vs. wage rank	0.038	0.164
σ_q	Firm learning environment variance	0.013	Variance of firm mean wage rank change Variance of $\alpha_{k(i)}$ in Equation 6	54.773 34.409	70.098 67.962
σ_{zq}	Firm learning-productivity covariance	0.013	Firm mean wage level-growth covariance	0.131	0.091
σ_h	Initial worker human capital variance	0.157	p75 - p50 Wages	6.165	3.262
σ_a	Worker learning ability variance	0.008	Wage rank change variance Variance of $\epsilon_{i,t}$ in Equation 6	73.354 7.286	174.555 9.428
σ_{ha}	Worker learning-initial productivity covariance	6.505e-04	Worker wage level-growth covariance	0.109	-0.005
9+	Learning from higher-ability coworkers	0.165	$ ilde{ heta}_1^+$ in Equation 6 $ ilde{ heta}_2^+$ in Equation 6	0.340 0.001	0.384
9-	Learning from lower-ability coworkers	0.034	$ ilde{ heta}_1^2$ in Equation 6 $ ilde{ heta}_2^2$ in Equation 6	0.003	-0.002 -0.002
Se	Employer death rate	0.001	P50 employer size	1	5
ψE	Employed Contact Rate	1.048	P90 employer size	8	7
Long panel					
δ_m	Match break rate	0.127	EN rate	0.149	0.070
ψ^N	Nonemployed Contact Rate	0.314	NE Rate	0.311	0.353
			Inferred employment rate	0.733	0.823

Note: This table reports the internally-calibrated parameters and compares the relevant model-generated empirical targets with those in the data. Unconditional moments are computed before the sample is restricted to stayers.

Opportunities for Learning

- ▶ Low *h* workers are closer to their coworkers than high *h* workers
- ► Few learning opportunities for high *h* workers as they are much more skilled than their coworkers

◆ Back

Joint Distributions

◆ Back

Joint Distributions

◆ Back

Markdown Definition

The dynamic marginal product of a worker x_i is the change in the joint value if the worker is removed:

$$J_i(S_k) := V(S_k) - V(S_k \ominus \mathbf{x}_i)$$

The markdown is the ratio of the worker's value to the marginal product:

$$W_i(S_k)/J_i(S_k)$$

◀ Back

Convergence V

Convergence W

Convergence χ

References

- AZINOVIC, M., L. GAEGAUF, AND S. SCHEIDEGGER (2022): "Deep Equilibrium Nets," International Economic Review. 63, 1471–1525.
- BURDETT, K. AND T. VISHWANATH (1988): "Balanced matching and labor market equilibrium," *Journal of Political Economy*, 96, 1048–1065.
- DUARTE, V. (2022): "Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle," .
- DUARTE, V., D. DUARTE, AND D. H. SILVA (2023): "Machine Learning for Continuous-Time Finance," Working Paper.
- FREUND, L. (2024): "Superstar Teams," Working Paper.
- HALL, R. E. (2005): "Employment Fluctuations with Equilibrium Wage Stickiness," *American Economic Review*, 95, 50–65.
- HERKENHOFF, K., J. LISE, G. MENZIO, AND G. M. PHILLIPS (2024): "Production and learning in teams," *Econometrica*, 92, 467–504.

References (cont.)

- HORNIK, K., M. STINCHCOMBE, AND H. WHITE (1989): "Multilayer feedforward networks are universal approximators," *Neural networks*, 2, 359–366.
- JAROSCH, G., E. OBERFIELD, AND E. ROSSI-HANSBERG (2021): "Learning From Coworkers," *Econometrica*, 89, 647–676.
- JUNGERMAN, W. (2023): "Dynamic Monopsony and Human Capital," Working Paper.
- KAHOU, M. E., J. FERNANDEZ-VILLAVERDE, J. PERLA, AND A. SOOD (2022): "Exploiting Symmetry in High-Dimensional Dynamic Programming," Working Paper.
- KRUSELL, P. AND A. A. SMITH, JR (1998): "Income and wealth heterogeneity in the macroeconomy," *Journal of Political Economy*, 106, 867–896.
- LISE, J. AND J.-M. ROBIN (2017): "The Macrodynamics of Sorting between Workers and Firms," *American Economic Review*, 107, 1104–35.
- MA, X., A. NAKAB, AND D. VIDART (2024): "How do Workers Learn? Theory and Evidence on the Roots of Lifecycle Human Capital Accumulation," Working Paper.
- MALIAR, L., S. MALIAR, AND P. WINANT (2021): "Deep Learning for Solving Dynamic Economic Models." *Journal of Monetary Economics*, 122, 76–101.

References (cont.)

POSTEL-VINAY, F. AND J. ROBIN (2002): "Equilibrium Wage Dispersion with Worker and Employer Heterogeneity," *Econometrica*, 70, 2295–2350.

THOMAS, J. AND T. WORRALL (1988): "Self-Enforcing Wage Contracts," *The Review of Economic Studies*, 55, 541–554.