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Abstract

What tasks must be performed to produce a good? Which occupations are well
suited to do those tasks? And what are the gains to worker specialization within the
firm? I use Brazilian administrative data to document new facts about how firms vary
the types of workers that they choose to hire as they grow larger. Bigger firms hire
more distinct occupations. They also hire a set of workers whose cognitive, manual,
and interpersonal skills are more dispersed than at small firms. I then develop a
structural model of how firms choose which types of workers to hire, and how they
assign tasks to these workers. I propose a novel identification strategy for how to
indirectly infer the (multi-dimensional) distribution of skill requirements for tasks that
firms face and using only cross-sectional data on which occupations firms choose to
hire, and in what proportion, across the firm size distribution. I estimate my model
using Brazilian manufacturing firms, and show that more than 1/3 of the variance in
firm level TFP is due to firms’ endogenous choices of which types of workers to hire
(and how specialized those workers should be). I find that gains from increasing firm
specialization are about 1.3% of output, and that the costs to shutting down worker
specialization within firms are large, leading to a 9.6% decrease in total output. I find
similar gains in more narrowly defined industry codes such as leather goods.
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1 Introduction

Economists have long understood that the productivity of workers depends on how they are

organized in production. A worker’s output depends not only on their skills, but on the

specific tasks that they are assigned to do in production, and how well suited they are to do

those tasks. However, which tasks they are assigned depends, crucially, on the composition

of their coworkers. In a small grocery store, a single worker may stock the shelves, sweep the

floors, staff the cash register, and plan the inventory orders. However, in a larger grocery

chain, these roles may be split up into separate occupations: cashiers who are dedicated to

checking out customers and stocking the shelves, janitors who focus on keeping the shop

clean, and managers who plan the store’s inventory from week to week. The set of tasks that

workers perform, and therefore their productivity, depends on the firm’s scale of production

and the degree of specialization that it can support.

In this paper, I seek to quantify, at the aggregate level, the gains from worker specializa-

tion within firms. I focus on three questions: What tasks must be performed to produce a

good? Which occupations are well suited to do those tasks? And what are the productivity

gains from reorganizing firms to use the optimal mix of occupations to complete these tasks?

To answer these questions, I develop a new theoretical model of how firms choose both

the set of occupations to employ in production, and how to assign tasks, with heterogenous

skill requirements, to workers in those occupations. My paper contributes a new theory

of firm’s endogenous choice of their organizational structure, reminiscent of the work of

Garicano and Rossi-Hansberg (2006), but allowing for multiple dimensions of skill (as in

Ocampo (2019), Lindenlaub (2017)) and heterogenous firms. I estimate my model using

administrative data on manufacturing firms in Brazil, and use the results to quantify the

gains from specialization. This measurement strategy exploits the detailed information on

the occupations of the workers hired by firms available in the Brazilian administrative data.

Such datasets have only become available to researchers in recent years.
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In the model, heterogeneous firms must choose how to optimally allocate a discrete

distribution of tasks to a finite number of worker types, which correspond to the various

worker types that firms choose to hire. Worker types are a bundle of (multi-dimensional)

skills, and tasks are defined by their skill requirements.1

I extend the task assignment framework to allow for productivity differences across firms.

Firms choose how many types of workers to hire, as well as the skill bundle that each worker

type will have. Firms pay an organizational cost for each additional type of worker that

they choose to hire, which captures the additional organizational and managerial overhead

involved in managing more types of workers. This cost leads firms to endogenously choose

to hire only a finite number of worker types. Firms take the wage function (i.e, the mapping

between worker skills and the wage they must pay) as given. In this environment, firms face

two main choices when organizing production: Firms choose how to assign tasks to workers,

as well as which set of occupations to hire (and in what quantities).

Task Assignment Problem. The firm must complete a pre-specified set of tasks to

produce. These tasks come in fixed proportions, which the firm takes as given. In the task

assignment problem, firms choose how to assign each task to a worker, subject to feasibility

constraints. That is, they cannot assign a worker more tasks than they have the time to

complete, nor can they assign a worker tasks that do not exist. A paralegal in a law firm

has only so many hours in the day, but also, there are only so many letters that need

to be opened. As in Ocampo (2019), this task assignment problem takes the form of an

optimal transport problem, which allows for convenient analytic results, and lends itself well

to efficient numerical solution methods as it is a special type of linear program.

Occupational Choice Problem. Firms face a tradeoff between their degree of worker

specialization and the organizational cost of hiring and managing more types of workers. At

1The model builds on Ocampo (2019), who considered the multi-dimensional task assignment problem
from the perspective of a single production unit. I allow for heterogeneous firms, which is key to identifying
the primitives of the model using linked employer-employee data.
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one extreme, firms might hire many different types of workers, who will all perform tasks that

are narrowly tailored to their skills. By minimizing worker-task mismatch, these firms can

achieve productivity gains. However, they must pay a higher organizational cost to manage

all of these different roles within the firm. At the other extreme, a firm might choose to

hire just a single worker type, who will perform all of the necessary tasks. These workers

will be less productive because of the high degree of mismatch between their skills and the

tasks they are asked to do, but the firm will economize on organizational costs. Firms have

an optimal scale that balances these two competing concerns, and higher productivity firms

(for whom the organizational overhead is relatively less important) will endogenously choose

a higher degree of worker specialization. This relationship between firm productivity and

organizational complexity is similar to the unidimensional results theorized and documented

in Rosen (1982), Garicano (2000) and Caliendo, Monte, and Rossi-Hansberg (2015). I allow

for tasks and workers to be heterogenous along several dimensions of skill, which is important

to match the empirical patterns of specialization that we observe in the data.

One of the main contributions of this paper is to show how to estimate a task assignment

model of this kind using matched employer-employee data. Many other papers on worker

specialization within the firm, such as Ales, Combemale, Fuchs, and Whitefoot (2021), have

relied upon detailed industry surveys and hand-collected data on the tasks that firms use in

production. As a result, it is difficult to use these approaches to speak to the macroeconomic

implications of worker specialization. My novel identification strategy, which exploits cross-

sectional heterogeneity across different sized firms allows me to explore the role of worker

specialization in driving aggregate productivity. I show how to recover estimates of the

distribution of tasks and of the worker-task production function using only a single cross-

section of firms.

The key difficulty here is that it is not straightforward to infer the types of tasks that

workers perform within a firm simply by observing the skills of the workers because within
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a firm, workers are substitutes for one another. Although it may not be the best use of their

time, a highly paid attorney could sort mail and answer phones. In fact, at small law offices,

they often do. A cashier at a small store might also sweep the floors, whereas a larger retail

business would hire a separate janitor.

To infer what kinds of tasks firms perform, one must take careful account of the fact

that workers with similar skills will perform different tasks within the firm depending on

the skills of their coworkers. It is this fundamental identification problem that necessitates

a structural model of how firms assign tasks to workers, and how they choose which workers

to hire, in order to make sense of the data we observe.

To make progress on this, I develop a novel identification strategy that allows me to

estimate the distribution of tasks that firms face by using data on which occupations firms

choose to hire, and in what shares, across the distribution of firm sizes. When the firm

behaves optimally, they choose a labor allocation which equates each occupation’s share of

the total wage bill to that occupations share of total output. I target the wage bill shares in

my estimation strategy, and show that we can use these moments to recover the primitives of

the task-based production function. Crucially, I observe workers with similar skills in firms

with different configurations of coworkers. So long as they are assigned to a different set of

tasks, this provides new information about what tasks the firms perform.

I implement this estimation strategy using administrative linked employer-employee data

from Brazil: the Relação Anual de Informações Sociais (RAIS). I interpret the worker types

from the model as worker occupations. To measure worker skills, I calculate measures of

occupational skills in the cognitive, manual, and social dimensions from O*NET, which I

construct as in Lise and Postel-Vinay (2020) and then merge into the RAIS.

I then use my estimates (for the manufacturing sector) to quantify the aggregate contri-

bution of worker specialization within the firm to observed productivity, and to evaluate the

welfare gains from increasing the degree of specialization within firms. I find that shutting
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down the within firm endogenous specialization channel leads to aggregate output losses of

9.6%. Moreover, I show that this endogenous worker specialization accounts for 36% of the

variation in firm-level TFP. I also find limited, but not insubstantial potential gains to in-

creasing the degree of worker specialization within the firm, which are around 1.3% of total

sector output.

I show that these results are robust to more narrow specifications of industry by re-

estimating the model for more specialized industries that specialize in the production of

homogeneous goods, such as the leather working industry. I show that these industries

exhibit similar patterns of firm specialization as for the aggregate manufacturing sector.

This paper proceeds in several sections. In section 2, I review the related literature. Sec-

tion 4 describes the model I use, and presents several important analytic results. Section 3

describes the RAIS and O*NET data that I use to estimate the model, and provides descrip-

tive results, and Section 5 describes the details of my estimation procedure, and presents the

results. I conclude in Section 7.

2 Related Literature

This paper builds on the existing literature that uses task assignment models to model the

firm’s choice to hire heterogeneous labor inputs in production. Many papers have adopted

a task based approach to modeling the firm’s production technology (for instance, Rosen

(1978), Acemoglu and Autor (2011)). These task assignment models treat worker skills as

being unidimensional. Like Lindenlaub (2017), I allow for several dimensions of skill. This

allows me to capture important heterogeneity in how the skills hired by firms vary across

the distribution of firm size.

My work is most closely related to Ocampo (2019), which also tackles the problem of

assigning workers to tasks in several skill dimensions by formulating the assignment problem
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as an optimal transport problem (Villani, 2009; Galichon, 2016), as in Lindenlaub (2017).

I build on this theory in two main ways: First, I extend the theory to accommodate het-

erogenous firms, whose choice of which occupations they want to hire yields an endogenous

hierarchy of specialization across firms. More productive firms choose to hire a more special-

ized set of workers in production and divide the tasks among them more efficiently to realize

lower costs of production. Second, observing workers with identical skills being employed in

different production configurations (with a different set of coworkers) provides me with a rich

source of cross-sectional variation that allows me to make substantial progress in identifying

the distribution of tasks that firms must complete in order to produce. I use the moments

implied by the firms’ first order conditions to estimate the task distribution, and provide a

constructive proof of identification.

An alternate approach to measuring the actual tasks that firms must complete has been

proposed by Ales, Combemale, Fuchs, and Whitefoot (2021). They exploit detailed surveys

of plant-level data, paired with a detailed task assignment model to recover estimates of the

firm’s production function. My approach complements this strategy; by allowing for multiple

dimensions of worker skill, and relying on O*NET measures of those skills, I estimate my

model using administrative data based on all firms in the economy, which allows me to

measure the aggregate impacts of the endogenous specialization channel.

This paper also contributes to our understanding of the firm’s endogenous choice of its or-

ganizational structure. Previous theoretical work on this problem, in Rosen (1982), Garicano

(2000), and Garicano and Rossi-Hansberg (2006) generates an endogenous organizational hi-

erarchy within the firm by assuming a production technology where workers, who differ only

along a single dimension of skill, pass tasks which are too difficult for them to complete up

to their managers. I contribute to this literature by providing an alternate approach to mod-

eling the firm’s organizational problem, which allows for multiple dimension of worker skill.

In my context, I do not impose the hierarchical structure of production a priori. Rather,

7



firms are faced with the choice of which occupations they want to hire, subject to occupation

specific fixed costs; these fixed costs play a similar role to the information processing frictions

which proved crucial in earlier work, while remaining agnostic about the specific hierarchy

of the firm’s reporting structure.

The main empirical findings of my paper, how the number of workers and their skills

vary with the firm size distribution, contribute to the empirical literature on how the firm’s

internal organization varies with size. Other papers, such as Caliendo, Monte, and Rossi-

Hansberg (2015), Caliendo, Mion, Opromolla, and Rossi-Hansberg (2020), T̊ag (2013), and

Friedrich (2020) have studied the organizational structure of firms using administrative data.

Although these papers focus on management layers rather than occupations, my empirical

findings are broadly in line with their results. This paper’s main contribution, relative to

that literature, is to document that the average skills hired by firms vary non-monotonically

with firm size, and that this varies substantially by skill type (among cognitive, manual, and

interpersonal skills).

3 Data

I make use of two datasets for my analysis. First, I use the Brazilian Relação Anual de In-

formações Sociais (RAIS), a rich and high quality administrative panel dataset covering the

entire Brazilian formal sector which measures worker earnings and demographic character-

istics, matched to the firms that employ them. Second, I merge into the RAIS occupational

measures of skill from O*NET, in order to associate with each worker a measure of their

cognitive, manual, and interpersonal skills.

In this section, I will give an overview of both of these datasets, and document several

novel facts about how the types of skills employed by Brazilian firms varies with firm size.
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3.1 Matched Employer-Employee Data (RAIS)

The RAIS is an administrative matched employer-employee dataset collected by the Brazil-

ian Ministerio da Economia (Ministry of the Economy).2 Every Brazilian firm that has a

tax identification number (Cadastro Nacional de Pessoa Juŕıdica — CNPJ) must file an

annual report to the government detailing the workers they hired and the wages they paid.

Regulatory compliance is enforced through a deterrence mechanism of fines and periodic

audits.

The RAIS has near universal coverage of all workers employed in Brazil’s formal sector,

starting in 1994. It is worth noting that, like many Latin American countries, Brazil has

a relatively large informal sector, which the RAIS does not cover.3 Because of these data

limitations, my analysis is restricted to formal sector-firms.

My sample covers the time period from 1994 to 2010, and includes a rich set of measures

of worker and firm characteristics. I observe anonymized firm, establishment, and worker

identifiers. These allow me to track workers and firms across time. Firms report, for every

worker they hire, the start and end months of the job spell, the weekly contracted hours,

the worker’s monthly earnings, as well as a set of demographic variables including age, sex,

nationality, education, and race.

Crucially, I observe both industry and occupation codes at the 5-digit level using the

Brazilian CNAE (Classificação Nacional de Atividades Económicas), and CBO (Classificação

Brasileira de Ocupações) respectively. The universal reporting of occupation codes is a

relatively unusual feature of the Brazilian administrative data, which I exploit to obtain

occupation-specific measures of worker skill.

2Until 2019, it was collected by the Ministerio de Trabalho e Emprego (Ministry of Labor and Employ-
ment), which was subsumed into the newly founded Ministry of the Economy as part of a government-wide
reorganization and administrative consolidation under the Bolsonaro administration.

3Dix-Carneiro, Goldberg, Meghir, and Ulyssea (2021) find that approximately 48% of the labor force
is employed in the informal sector, and that this comprises nearly two thirds of firms. The formal sector,
however accounts for the majority (60%) of total output.
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I drop from my sample workers who are missing earnings or occupation data, as well as

the top and bottom 5% of wage earners, but I do not impose any other sampling restrictions.

This is because my analysis relies, as much as possible, on observing the full composition of

each firm’s workforce and their skills.

3.2 Occupational Skill Data (O*NET)

I use the Occupational Information Network (O*NET) Database to generate occupation

specific measures of worker skills. O*NET collects detailed survey data on occupations

by surveying businesses (in the US) about the characteristics of the occupations that they

employ.

O*NET collects detailed survey data on 970 different occupations in the US, with 277

distinct descriptors. Each descriptor includes information about its relative importance, the

level, and the relevance to the job. To extract measures of occupational skill from this

data, I follow the procedure in Lise and Postel-Vinay (2020). That is, I use a singular value

decomposition to extract the first three principal components of the skill measures. To obtain

measures that are interpretable as cognitive, manual, and interpersonal skill, I choose three

skill measures which I will interpret as reflecting only one of the three dimensions of skill. I

then find the linear combinations of the first three principal components that satisfy three

exclusion restrictions:

1. The mathematics score reflects only cognitive skills. That is, it is orthogonal to my

measures of manual and interpersonal skill.

2. The mechanical knowledge score reflects only manual skills. It is orthogonal to the

measures of cognitive and interpersonal skill.

3. The social perceptiveness score reflects only interpersonal skills. That is, it is orthog-

onal to my measures of cognitive and manual skill.
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I then rescale these measures so that they lie in [0, 1]. This procedure allows me to generate

measures of cognitive, manual, and interpersonal skill that rely on a minimal set of exclusion

restrictions, and does not require me to classify the O*NET descriptors as reflecting any one

type of skill a priori (other than the three descriptors used in the exclusion restrictions). I

map these skill measures to the US Census 2000 occupation codes using the mapping from

Sanders (2012).

The O*NET data is unusual for the degree of detail with which it describes the skills

and characteristics of workers in each occupation. To the best of my knowledge, comparable

surveys have not been conducted specifically in Brazil.4 To interpret the O*NET survey in

the Brazilian context, I rely on the fact that, as Muendler, Poole, Ramey, and Wajnberg

(2004) argue, the Brazilian occupational classification system (CBO) is based on a similar

set of organizational principles to that of the 1988 International Standard Classification of

Occupations (ISCO-88) system. This allows for a reasonable mapping of Brazilian occupa-

tions to the US Census codes5, and for a meaningful interpretation of O*NET occupational

skill measures within the Brazilian context.

3.3 Defining effective labor

To measure how firms change the types of workers that they hire, I first need to define

a notion of firm size. My preferred measure is a measure of each firm’s total quantity of

effective labor hired (this is also a measure that is consistent with the model). This analysis

is robust to defining firm size in terms of total hours of labor hired, total wage bill, or total

number of workers hired.

For each worker i, denote their occupation ni ∈ 1, . . . , N , the firm they are employed at

as ji ∈ 1, . . . , J , and their average monthly earnings as wi over their employment spell at

4The World Bank’s STEP Skills Measurement Program is the closest other source of occupational skill
data in the international context, but has not yet expanded their data collection efforts to Brazil.

5The mapping I use is built off of a crosswalk that was generously provided to me by Gustavo de Souza
(See De Souza (2020)).
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firm ji. For every occupation n, let wn denote the average monthly earnings for workers in

occupation n, weighted by total hours worked li I define worker i’s effective labor supplied

as:

Mi := li ×
(
wi
wni

)
That is, I adjust the total number of hours worked by the ratio of the worker’s wages to

their occupation’s average wages, in order to get a measure of the worker’s efficiency units

of labor supplied. I rank the firms by the total quantity of effective labor that they hire, and

for each firm j, I compute their percentile rank rj.

3.4 Stylized Facts

I document several novel facts about how firms vary both the overall number of occupations

and the skills of those occupations, all of which suggest that firms are increasing the degree

of worker specialization as they get larger. For each percentile rank r, I compute both the

average effective labor hired, and the average number of distinct occupations hired (at the

2-digit level), and plot the relationship between them in Figure 1. We see that, for all but

the very small firms in the economy (who hire less than a single full-time equivalent worker’s

worth of effective labor), there is a stark and increasing log-linear relationship between the

total quantity of labor hired, and the number of occupations that they choose to employ,

with a slope of approximately 0.37. The relatively flat slope among the very small firms may

reflect labor indivisibilities (it may be difficult to hire labor in extremely small bundles, so

in firms that hire very little labor, it is more difficult to divide labor among several types of

workers, since each worker would only be hired for a few hours in a given week).

This relationship, while not necessarily surprising, captures an important dimension of

how firms increase the degree of specialization among their workers as they grow. It is not,

however, purely mechanical.6 Crucially, it suggests that firms are increasing the degree of

6To see this consider two extreme cases. First, imagine that occupations were entirely uninformative,
and were essentially a random labelling. This is the case we would expect to see if everything were being
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Figure 1: Average number of distinct occupations by firm size, in 2000. Firms are ranked by
the total number of efficiency units of labor that they hire in each year, and we compute, for
each percentile bin, the average quantity of labor hired in that bin, and the average number
of distinct 2-digit occupations hired by firms in that bin. Both axes are on log-scale.

specialization of workers within the firms as they get larger.

However, for understanding worker specialization within the firm, the number of distinct

occupations is a relatively coarse measure. Two occupations may be labelled separately,

despite having nearly identical skills, and being highly substitutable for one another in pro-

duction, or may truly reflect distinct skills that are used differently in production. To distin-

guish between these cases, I will exploit the continuous measures of occupation skill, along

the cognitive, manual, and interpersonal dimensions, which are derived from the O*NET

driven by the indivisibility of labor bundles. In this case, we would expect to see far more occupations being
hired at comparably sized firms, with a slope of the relationship between the total quantity of labor hired
and the number of distinct observations being much closer to 1. In the data, firms increase the number
of occupations that they hire much more slowly than we would expect to see if occupations were assigned
randomly (This is similar to the “Balls in Bins” mechanism explored in Armenter and Koren (2014)).

In the second case, imagine that labor is perfectly divisible among occupations, and firms face no overhead
or fixed costs associated with increasing the number of worker types that they choose to hire. In this case,
there is an efficient way to divide labor among the various occupations, and every firm chooses exactly the
optimal mix of occupations (and therefore the same number of distinct occupations) regardless of size.

These two examples make clear that the slope of this relationship is highly informative about the organi-
zational costs that firms face.
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Figure 2: Average worker skills by firm size, in 2000. Firms are ranked by the total number
of efficiency units of labor that they hire in each year, and we compute, for each percentile
bin, the average quantity of labor hired in that bin, and the average value of cognitive,
manual, and interpersonal skills of all the workers hired by firms in this bin, weighted by
efficiency hours. Firm size is on log-scale.

data.

Within each percentile bin of firm size, I calculate the mean skill level of the workers

hired, weighted by their effective labor supplied, for the cognitive, manual, and interpersonal

measures of skill, and plot the results in Figure 2. I find that while firms’ choices of the

average manual skills of their workforce does not vary much in firm size, both the cognitive

and interpersonal skills exhibit a non-monotone shape. That is, while very small and very

large firms hire a very highly skilled workforce in the cognitive and interpersonal dimensions,

medium sized firms hire, on average, less skilled workers.

To understand the mechanisms at play, I divide the set of firms into “large firms” (50th

percentile to 99th percentile) and “small firms” (1st percentile through 49th percentile), and

compute the kernel density estimate of the distribution of worker skills in the cognitive and

interpersonal dimensions. I plot the resulting estimate of the distribution in fig. 3. Small
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Figure 3: Distribution of worker skills hired, small versus large firms, in 2000. Firms are
ranked by the total number of efficiency units of labor that they hire in each year, and
divided into large and small firms at the median. For each grouping of firms, I compute the
kernel density estimate of the distribution of worker skills, weighted by efficiency hours, in
the cognitive and interpersonal dimensions.

firms hire workers with relatively high cognitive and interpersonal skills, with most of the

mass concentrated in just one occupation (Sales Engineers), with relatively high cognitive

skills (0.73) and interpersonal skills (0.56). In contrast, among larger firms, the single largest

occupation hired are secretaries and administrative assistants (cognitive skills of 0.44 and

interpersonal skills of 0.51), and the occupations are much more dispersed in skill space, with

only 7.1% of the effective concentrated at the mode (as opposed to 22.9% in small firms).

Much of the mass in the distribution moves to workers with relatively low skills, but who are

more dispersed in the skill space, consistent with firms choosing to hire less skilled workers,

who are better matched to the tasks that they are assigned to do in production.

I quantify the increase in the dispersion that we observe by calculating, for each firm, the

within-firm standard deviation of worker skills, in the cognitive, manual, and interpersonal

dimensions. This is a firm-specific measure of how dispersed the workers that they choose to

hire are in the skill-space. I compute the average of this measure for each percentile of firms,

and plot the results in Figure 4. A large share of the increase in dispersion that we observe is

being driven by the within firm dispersion of worker skills, which suggests an important role
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Figure 4: Within-firm dispersion in worker skills, in 2000. Firms are ranked by the total
number of efficiency units of labor that they hire in each year, and I compute the within-
firm standard deviation of cognitive, manual, and interpersonal skills, weighted by efficiency
hours. For each percentile bin, I compute the average quantity of labor hired in that bin, and
the mean of the within-firm standard deviations of worker skill. Firm size is on log-scale.

for worker specialization within the firm in understanding how firms choose to hire different

types of workers.

To formalize these stylized facts, and to account for industry-specific composition effects,

I consider a regression specification that projects the following onto firm size deciles: the log

of the number of distinct occupations; the mean skills in each of the cognitive, manual, and

interpersonal dimensions; and the within-firm standard deviation of each skill. These are

regression-based analogues of Figures 1, 2 and 4. I estimate

yi =
10∑
s=2

βsD
s
i + γd(i) + εi (1)

where Ds
i is an indicator variable for whether firm i is in decile s of the firm size distribution

(calculated using the firm’s total quantity of effective labor hired), and γd(i) is a fixed effect

for each 5-digit industry d(i). I report the results from these specifications in Table 1.
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In specification (1), I find that firms in the highest decile of the size distribution hire 4.4

times as many distinct occupations on average as firms in the fifth decile, and 6.3 times as

many as firms in the lowest decile. The average number of distinct occupations is tightly

estimated, with non-overlapping confidence intervals, even when controlling for composition

effects by industry.

In specifications (2) - (4), I find that the within-firm dispersion of skills is increasing

in each of the three dimensions of skill that I measure. Again, the decile fixed effects are

extremely precisely estimated, and are monotonically increasing in each dimension of skill,

with non-overlapping confidence intervals. Firms in the highest decile of the size distribution

hire a set of workers whose skills are substantially more dispersed than firms in the fifth

decile. My estimates imply that the within-firm standard deviation among the largest firms

is more than 2.5 times that of the fifth decile firms in all three dimensions of skill. Because

these measures of within-firm dispersion in worker skill are weighted by the total quantity of

labor hired, this increase in the variance in skills is not a mechanical result of having more

workers. Workers employed by larger firms genuinely have a more dispersed set of skills than

the workers at their smaller counterparts.

Moreover, I find that the average skill level varies substantially by firm size in all three

dimensions of skill. In specifications (5) - (7), I find that the average level of skill differs

substantially across the deciles of firm size. The differences in average skill are large relative

to the within-firm dispersion of skills. For instance, the difference between the average

cognitive skills of the workers of workers at the fifth decile and workers at the first decile

corresponds to more than half the standard deviation of cognitive skills within fifth decile

firms. This difference in average skills corresponds to about 7.6% of the sample average of

cognitive skills. Similarly, the difference for firms at the ninth decile corresponds to 13.4%

of the sample mean. Crucially, for all three dimensions of skill, we can reject (with p-values

below machine precision) the null hypothesis that average skills are constant in firm size (i.e,
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that all of the coefficients are the same).

I show, in Appendix F that these empirical findings persist even in extremely narrowly

defined industries that produce a homogeneous good, such as sugar cane production, coffee

production, concrete manufacturing, and the plywood industry. This suggests that my main

empirical findings are being driven by an increase in the degree of specialization of workers

among larger firms, rather than industry composition effects, or heterogeneity in the goods

that are being produced.

To rationalize these findings, and to quantify the role of worker specialization within the

firm, in the next section I develop a structural model of how firms choose which occupations

to hire, and how to optimally assign tasks to those workers.
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Within Firm Std Skills Avg Skills
log(Occupations) Cognitive Manual Interpersonal Cognitive Manual Interpersonal

(1) (2) (3) (4) (5) (6) (7)
deciles: 2 0.051*** 0.006*** 0.006*** 0.006*** 0.003 0.011*** -0.004***

(0.004) (4.964e-04) (4.360e-04) (4.567e-04) (0.002) (0.001) (0.002)
deciles: 3 0.119*** 0.016*** 0.014*** 0.014*** -0.014*** 0.014*** -0.019***

(0.006) (7.749e-04) (9.592e-04) (8.184e-04) (0.003) (0.002) (0.002)
deciles: 4 0.220*** 0.030*** 0.026*** 0.026*** -0.021*** 0.018*** -0.025***

(0.011) (0.001) (0.002) (0.001) (0.004) (0.003) (0.002)
deciles: 5 0.368*** 0.051*** 0.042*** 0.043*** -0.025*** 0.018*** -0.027***

(0.016) (0.002) (0.003) (0.002) (0.003) (0.003) (0.002)
deciles: 6 0.521*** 0.069*** 0.057*** 0.058*** -0.030*** 0.017*** -0.030***

(0.019) (0.003) (0.003) (0.002) (0.003) (0.005) (0.003)
deciles: 7 0.706*** 0.086*** 0.074*** 0.074*** -0.035*** 0.015** -0.032***

(0.020) (0.003) (0.003) (0.002) (0.004) (0.007) (0.005)
deciles: 8 0.927*** 0.102*** 0.090*** 0.089*** -0.038*** 0.012 -0.033***

(0.020) (0.003) (0.004) (0.003) (0.006) (0.009) (0.008)
deciles: 9 1.212*** 0.116*** 0.106*** 0.104*** -0.043*** 0.014* -0.037***

(0.021) (0.003) (0.004) (0.003) (0.006) (0.008) (0.007)
deciles: 10 1.846*** 0.127*** 0.123*** 0.119*** -0.044*** 0.022*** -0.038***

(0.047) (0.003) (0.003) (0.003) (0.005) (0.007) (0.006)
Industry FE Yes Yes Yes Yes Yes Yes Yes

N 1330135 1330135 1330135 1330135 1330135 1330135 1330135
R2 0.632 0.326 0.369 0.388 0.344 0.410 0.352

Table 1: Average skills and within-firm standard deviation of skills are calculated by as the mean/standard deviation of the
cognitive, manual, and interpersonal skills of workers hired, weighting by the total quantity of effective labor supplied by each
worker. Firm size ranks are calculated using the total quantity of effective labor hired. Industry fixed effects are at the 5-digit
industry level, and standard errors are clustered by industry.
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4 Model

4.1 Aggregation of Output

Consider a continuum of firms, with a unit mass. Each firm, indexed by j ∈ [0, 1], produces

a differentiated good by hiring labor to complete tasks.

Final output Q is produced by a competitive firm using the output qj of the continuum

of intermediate firms.

Q =

[∫ 1

0

qσj dj

] 1
σ

(2)

The price index P is given by

P =

[∫ 1

0

pr(qj)
σ
σ−1dj

]σ−1
σ

(3)

and the inverse demand function for the output of each intermediate firm is given by

pr(qj) = P

(
qj
Q

)σ−1

(4)

Final goods producing firms aggregate the output of the intermediate goods producing

firms, using a CES aggregation technology, to produce output to be sold to the household.

4.2 Firms

Each intermediate firm has a set of K discrete tasks yk ∈ Y = [0, 1]d which they must

complete in order to produce output, and which are defined by their relative difficulty along

d different dimensions of skill. The tasks occur in fixed proportions, and are distributed

according to a probability mass function G ∈ ∆K ⊂ RK . While the firm can scale the total

measure of tasks they want to complete up or down by a factor of s, the relative shares

of each task must remain fixed. In Figure 5, I show an example distribution G across six
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Figure 5: Example: The tasks a firm must complete.

Note: The size of each bubble corresponds to the relative proportion of the tasks

discrete tasks y1, . . . ,y6.

Firms hire workers with a set of skills x ∈ X = [0, 1]d which are a bundle of skills in the

same d dimensions. I.e, tasks and skills live in the same space. How “close” an occupation x

is to a task y tells you how well suited a worker with those skills is to do that task. Workers

are endowed with their bundle of skills x ∈ X , an idiosyncratic productivity υ, and a unit

endowment of time. Their output scales linearly with their idiosyncratic productivity, and

so workers can be thought of as supplying υ units of effective labor. For what remains, I will

suppress υ for ease of notation, since firms are indifferent between hiring one unit of labor

from a worker with υ = 1, versus half a unit of labor from a worker with υ = 2.

Each firm has a productivity zj ∈ R that are distributed with cdf F : R → R. Firms

produce output by completing tasks. When a task y is paired with a worker x, the worker
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Figure 6: Example Placement of Workers.

Note: When a worker x is assigned to task y, they produce output of quality f(x,y)

produces f(x,y) units of output. Firms pay workers a wage w(x), where w : X → R

is a competitive wage function that depends on the worker’s skill. Firms must pay an

organizational cost κ for every discrete worker type that they employ (which captures the

additional organizational cost and complexity of managing many different types of workers).

As a result, they will choose to hire only a finite number of distinct worker types N in

production.

Firms decide how to produce by choosing a time allocation π : X × Y → R+. This

function takes pairs of workers x and tasks y, and maps them to the amount of time that

workers of type x will spend working on task y. Since both X and Y are finite sets, with

size N and K respectively, it is natural to think about π as a vector in RNK , and I will

slightly abuse notation to write πnk = π(xn,yk). That is, πnk denotes the amount of time
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that a worker of type n is assigned to work on task k. If πnk = 0 that means that task k

is not assigned at all to workers of type n. On the other hand, if πnk = Gks, then task k

is exclusively assigned to workers of type n. The firm’s choice of the task assignment πnk,

conditional on the choice of {xn} and {Ln}, is an optimal transport problem. Following

Villani (2009), I will refer to a task assignment as a pure assignment solution if each task is

assigned to one and only one worker. That is, if whenever πnk > 0 for some n and k, that

implies πn′k = 0 for all n′ 6= n. In Figure 7, I show an example firm’s task assignment πnk,

in the case where the firm has chosen a pure assignment solution.

The time allocation that the firm chooses must respect two physical constraints. First,

the total amount of time that the firm allocates to workers of type n cannot exceed the

amount of labor Ln that the firm has hired from workers of that type. In other words, they

must respect the time constraints of the workers that they choose to hire.

K∑
k=1

πnk ≤ Ln n = 1, . . . , N (5)

Second, the total amount of time that the firm allocates to tasks of type n must be equal to

the amount Gks of task k which they have chosen to do:

N∑
n=1

πnk = Gks k = 1, . . . , K (6)

By requiring that this constraint hold with equality, I insist that every task must be done in

the given proportions. Although the firm can choose to scale the entire distribution of tasks

up or down by a factor s, the relative shares of the tasks must always remain the same. In

Figure 8, I show examples of each of these two constraints.
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Figure 7: An example worker allocation for a firm.

Note: This firm only chooses to hire x1 and x2. Worker types x3 and x4 are shown in grey
to denote the fact that this firm has chosen not to hire any workers of these types. The size
of the circles around x1 and x2 denote the quantities of labor L1 and L2. In this example,
workers of type x1 are assigned the first three tasks {y1,y2,y3}, and workers of type x2 are
assigned the rest. Note: in this example, the firm has chosen a pure assignment, where each
task is assigned to one and only one worker. In principle, they could have split a task across
several workers.
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(a) Each task must be fully assigned.
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(b) The workers’ time constraints.

Figure 8: Example of the full assignment constraint and the workers’ time constraints.

Note: In the panel on the left, we see an example where π16 + π26 = G6s, reflecting the
constraint that each task is always fully assigned. In the panel on the left, we see an
example of the workers’ time constraint: π24 + π25 + π26 ≤ L2.
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Firms aggregate the individual units of output from each worker-task pairing using a

CES production technology:

qj = zj

[
N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk

] 1
η

(7)

where η controls the degree to which output from different worker-task pairings are substi-

tutes or complements.

The firm problem is then to choose:

1. How much output q to produce,

2. How many distinct worker types N to employ in production,

3. The bundle of worker skill vectors {xn : n = 1, . . . , N},

4. The measure of each worker type’s labor Ln to hire,

5. The scale of production s,

6. The time allocations πnk

in order to maximize profits.

That is, firms choose their total production, and the number of worker types to satisfy

max
q
p(q)q − cN(q, zj)− κ×N (8)

where cN(q, z) is the cost of producing q units of output. The firm’s choice of the number

of workers to hire depends on their scale of production. It is key to observe here that the

organizational cost κ×N does not scale with the the firms output q; it functions as a fixed

cost for producing at that organizational scale. A firm with relatively low productivity will

choose a lower level of organizational complexity, whereas a firm with a higher productivity

may be able to support the additional fixed costs of hiring more types of workers, in order to
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achieve the commensurate gains in worker productivity (and therefore lower per-unit costs

of production) due to specialization.

Firms then choose {xn : n = 1, . . . , N} ,L, s, and π to minimize total costs subject to an

output constraint, and eqs. (5) and (6)

cN(q, z) = min
xn,Ln,π,s

N∑
n=1

wnLn Total costs

s.t.
K∑
k=1

πnk = Ln ∀n Every worker is fully utilized

N∑
n=1

πnk = s×Gk ∀k Every task is fully assigned

z

[
N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk

] 1
η

≥ q Output constraint

(9)

One convenient feature of this formulation of the firm’s optimal assignment problem

is that all of the choice variables enter linearly other than the choice of the skill bundles

{xn : n = 1, . . . , N}. As a result, we can split this into a two stage budgeting problem,

where the firms first choose the bundle of worker skills, and then choose the amount of each

worker to hire, the scale of production s, and the time allocation π. This second stage is a

linear program, which is extremely tractable both analytically and computationally.

4.3 Properties of the Optimal Assignment

In addition to being a linear program, the firm’s optimal assignment problem has a number

of desirable properties which I will exploit in the identification and estimation of the model.

First, we can note that cN is linear in (q/z)η. This is easy to see after noting that since both

z > 0 and η > 0, we can always rewrite the firm’s output constraint in terms of (q/z)η:

N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk ≥

(q
z

)η
(10)
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Since the objective and all of the other constraints are linear in the firm’s choice variables,

we can factor out (q/z)η from the problem. In particular, this means we can always rewrite

the firm’s total costs as

cN(q, z) =
(q
z

)η
c?N (11)

for some constant c?N := cN(1, 1). I formalize these claims and prove them in Lemma 1 (see

Appendix A).

Furthermore, I show that the firm’s choice of the task assignment will always be a pure

assignment solution. That is, except for knife’s edge conditions, the firm will only choose

to assign a given task to a single worker. In other words, if πnk > 0, then πn′k = 0 for all

n′ 6= n. Intuitively, this is derived from the fact that for a given set of wages and a given

production function f , and for each task k, the firm can strictly rank workers by the firm

surplus that they generate when assigned to that task. For the firm’s task assignment to be

optimal, they will always assign task k exclusively to the worker who generates the greatest

surplus. I formalize and prove this claim in Proposition 1 (see also Appendix A).

4.4 Identification

In this section, I argue that the key object of inference, the distribution of tasks G, can be

identified semi-parametrically using the first order conditions of the firms’ problem. Here,

I will give an informal description of the identification argument, and state the main result

(whose proof can be found in Appendix B).

A necessary condition for optimality that is implied by eq. (9) is that

w(xn)Ln∑N
i=1w(xi)Li︸ ︷︷ ︸

Worker n’s share of the wage bill

=
K∑
k=1

f(xn,yk)
ηπ?nk︸ ︷︷ ︸

Worker n’s share of output produced

+ εn (12)

where εn is a residual term. That is, each worker’s share of firm costs must equal their
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share of total output produced. I show the derivation for this FOC in Proposition 2, and

show that the residual term εn has mean zero by construction. The key intuition for how

we can use this to identify the distribution of tasks is that π?nk is intimately tied to the

distribution G through the constraints on its marginals. Each time we observe a worker

in a different production configuration (i.e., with a different set of co-workers), it provides

additional information about what the underlying distribution of tasks must have been.

Each additional firm configuration we observe is guaranteed to provide at least one ad-

ditional degree of freedom to estimate the task distribution, and in practice provides much

more additional information than that.

Theorem 1. Suppose we observe firms that hire up to N occupations in the data, and we

observe data on their skills and wages. Suppose further that the function f is known, and

that f distinguishes workers almost everywhere. If the number of tasks is K, and K ≤ N

then the distribution of tasks G is identified within a neighborhood of the solution.

For the proof, see Appendix B. This theorem provides a relatively weak guarantee that,

for a given production function f , the choices of the largest firms in the economy will pin

down a discrete task distribution with as many tasks as the number of workers that they

hire. However, this is for the worst possible scenario, where the additional occupation in a

firm of size k is assigned a strict subset of the tasks assigned to just a single occupation in

the firm of size N − 1, for all N . (This means that an additional occupation only provides

information about the distribution of tasks in the first firm size at which they are observed).

In practice, this is not an issue, and firms rarely nest the assignment sets of workers (at

the parameters I estimate), so I exploit the fact that workers are observed being assigned

different tasks at different firms.

To address this, I use a parametric functional form for the distribution of tasks with fewer

degrees of freedom than the number of occupations hired in the largest firm, so that I am

guaranteed that the parameters are identified. I use the remaining first-order conditions from
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the smaller firms to identify the parameters of the production function f and the elasticity

of substitution parameter η.

5 Estimation

There are four crucial objects in the model that must be estimated: the distribution of tasks

G(y), the worker task production function f(x,y), the distribution of firm productivities

F (z), and the fixed costs of hiring an additional occupation κ. To estimate them, I proceed

in three stages:

1. I assume a parametric functional form for both G(y) and f(x,y), and estimate these

parameters and the elasticity of substitution η using nonlinear GMM on the moment

conditions implied by the firm’s problem eq. (9).

2. Given these estimates from stage 1, I recover firm level estimates of both output q and

productivity z by choosing the ratio q/z to match the firm’s observed wage bill, and

backing out q and z from the first order conditions for the firm’s choice of q in eq. (8)

3. I then estimate κ using simulated method of moments to match the observed rela-

tionship in the data between the firm’s wage bill and the total number of occupations

hired.

A key identifying assumption here is that the set of tasks being done by firms is constant

within an industry. That is, large firms are doing the same set of tasks as small firms. I

show, in Appendix G that the overall qualitative results presented in this section, and in

Section 6, are robust to a more narrow definition of industry size, in an industry (Leather

working) which specializes in a homogeneous good.
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5.1 Stage 1: Task distribution and production function

In order to proceed, I fix a set of tasks as the cartesian product of uniformly spaced grids in

each dimension of skill:

X = XC ×XM ×XI

Xd := {i/nd | i = 1, . . . , nd} for d ∈ {C,M, I}

where nC , nM and nI are the number of of grid points in each dimension of skill. I set

nC = nM = nI = 8, which is a tradeoff between the accuracy of the approximation to a

continuous distribution of tasks and the computational burden of solving the firm’s optimal

assignment problem.

I assume that the distribution of tasks G(y) has marginal distributions that are parame-

terized by a Beta distribution, with shape parameters αd and βd, for each dimension of skill

d = C,M, I. Beta distributions are a relatively flexible family of distributions that have

bounded support on the unit interval. I parameterize the full distribution G using a Gumbel

Copula, with rank parameter θ. Here, θ governs the strength of the correlation among the

ranks in each dimension.

For a given distribution G(x), I discretize it over the set X by finding the vector G ∈ RK

such that

G(xk) =
K∑
r=1

1(xr ≤ xk)Gk (13)

In other words, finding the vector of probability masses G such that the “empirical cdf” of

the discretization coincides with G at each of the grid points.

To parameterize the worker task production function, I assume that

f(x,y) = h (x′Ay − (x− y)′B(x− y))

h(x) =
1

1 + exp(−x)
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The inverse logit link function h bounds the worker-task output to lie between zero and one.

There are two main terms within the production function here: the x′Ay captures a notion

of absolute advantage in the production function. The matrix A encodes how worker skill x

interacts with the skill content of the tasks y. The matrix B, which I restrict to be positive

definite, defines a distance metric between worker and tasks. It captures the comparative

advantage of workers. The quality of a worker’s output when assigned to a task is, all else

being equal, decreasing in the distance between the worker and the tasks. B controls which

dimensions of mismatch are the most important for determining output.

For ease of notation, let Θ := (α, β,A,B, θ, η) denote the collection of all the param-

eters we are estimating. I estimate the model on the subset of workers and firms in the

manufacturing sector.

To actually estimate the model, I calculate, for every firm j, and each occupation n, the

residual of the firm’s moment condition eq. (12):

Rj,n(Θ) =
wnLj,n∑K
s=1wsLj,s

−
K∑
k=1

f(xn,yk; Θ)ηπ?j,n,k(Lj,Θ) (14)

where π?j,n,k is the solution to eq. (9) under the additional restriction that L = Lj (the

firms hire the same quantity of effective labor that we observe in the data).7 To solve the

firm’s optimal assignment problem, under these constraints, I treat the firm’s constrained

problem as an optimal transport problem and approximate its solution numerically by solving

an entropic regularization of the original problem using Sinkhorn iterations.8 Rather than

7Because the firm’s cost function is linear in (q/z)η, I know that all firms that choose the same number of
workers K will choose the same set of which occupations to hire, and will choose a time allocation for their
workers which are invariant up to a proportional scaling factor. I exploit this property to estimate θ using
moment conditions which are calculated not at the firm level, but aggregated across all firms who choose
the same set of occupations in the data. This yields considerable savings in the computational burden of
estimating the model. I write the moment conditions at the firm-level throughout for ease of notation.

8See Peyré and Cuturi (2019), Chapter 4 for a detailed numerical description of the algorithm, and a
proof that for sufficiently small values of the regularization parameter, the solution to this relaxation of
the original problem approximates the true solution arbitrarily well. I choose a regularization parameter
ε = 0.01, which is in line with the values commonly used in the numerical OT literature. This regularization
closely approximates the exact solution to the linear program, while converging nearly 3 orders of magnitude
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α β
Cognitive 3.517 1.595

Manual 3.579 1.820
Interpersonal 1.015 1.148

Table 2: Parameter Estimates for Marginal Distributions of G(x)

Absolute Advantage Comparative Advantage
Cognitive Manual Interpersonal Cognitive Manual Interpersonal

Cognitive 1.575 -1.264 -2.161 3.499 0.687 -0.431
Manual -8.611 2.287 4.617 0.687 0.267 0.008

Interpersonal 9.961 -0.701 -2.686 -0.431 0.008 0.123

Table 3: Parameter Estimates for the production function parameters A and B

targeting eq. (14) directly, I define my moment targets in percentage deviations from the

wage bill shares R̂j,n(Θ). I then choose the parameters Θ in order to minimize the nonlinear

GMM objective:

min
Θ

J∑
j=1

N∑
n=1

R̂j,n(Θ)2ωj,n (15)

where ωj,n are weights that are proportional to the total quantity of effective labor employed

(so that more weight is put on the FOCs that correspond to a larger employment share of

the population). Note that I define both R̂j,n(Θ) = 0 and ωj,n = 0 if firm j does not employ

any workers of occupation n. I report the point estimates in Tables 2 and 3. I plot the

implied distribution of tasks in Figure 9. My estimates imply that the interpersonal skill

requirements of tasks are much more widely dispersed through the skill space than either

manual or cognitive skills. In both the cognitive and the manual dimensions, the bulk of the

distribution of tasks is concentrated among tasks with low skill requirements, although there

are some higher skill tasks which must be completed. The interpersonal skill requirements

of tasks are relatively high, and fairly evenly dispersed through the task space.

faster than exact methods in my application.
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5.2 Stage 2: Distribution of firm productivity

Once I have estimates of the task distribution, and the parameters of the firm’s production

function, I recover estimates of firm productivity and output using the firm’s total wage bill,

and the first order condition governing their optimal choice of output q. I exogenously set

the parameter σ (which governs the elasticity of substitution between firms) to 0.85, which

is in the middle of the range of plausible estimates in Atkeson and Burstein (2008).

For each firm j, I know their choice of effective labor hired Lj,n for each occupation n. I

also know that their cost function takes the form

cNj(q, z) =

(
qj
zj

)η
c?j

where c?j is the cost of producing zj units of output (i.e, when qj/zj = 1.) Using my estimates

from Stage 1, I can calculate the model’s implied c?j , and then I back out the ratio qj/zj from

the ratio of the firm’s wage bill to their “unit” costs:

qj :=

(
qj
zj

)
=

(∑N
n=1wnLj,n

c?j

) 1
η

(16)

I show in appendix C that given qj, both q and z are separately pinned down by the firm’s

optimality condition in their choice of q, subject to a normalization of the aggregate price

index P to 1.9 They are given in closed form by:

qj =

(
ηc?jqj
ασ

) 1
σ

zj =
1

qj

(
ηc?jqj
ασ

) 1
σ

(17)

where α = P/Qσ−1. My estimates inherit their log-normal shape from the log-normal dis-

9This normalization, while somewhat nonstandard, follows from the fact that I have already specified
a unit of account for the wages (multiples of the Brazilian monthly minimum wage), and have not pinned
down the scale of the distribution of firm productivities.
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Parameter Values
η 0.922
θ 6.699
κ 20.925

Table 4: Parameter Estimates for remaining parameters

tribution of firm wage bills, although the distribution of model-implied firm productivities

appears to be left-skewed.

5.3 Stage 3: Fixed costs

To estimate the fixed costs, I solve the firm’s full assignment problem eq. (9) for each firm

size N = 1, . . . , NMax. With these costs c?N in hand, for any given value of κ, it is easy to

simulate the firms’ choice of how many occupations to hire, since for any given z, and choice

of N , we know their optimal choice of q in closed form:

q?(z, k) =

(
ασzη

ηc?K

) 1
η−σ

(18)

Firms choose N to maximize profits as in eq. (8). I then estimate the fixed costs κ using

simulated method of moments, to match the coefficients of the regression of

log(Nj) = β0 + β1 log(Cj) + εj (19)

where Cj =
∑N

n=1wnLj,n is the firm’s total wage bill. My estimate of κ, reported in table 4,

is denominated in multiples of the Brazilian monthly minimum wage. This value of the fixed

cost corresponds to the annual earnings of about 13 workers hired full time at the minimum

wage, which suggests that the organizational costs of hiring additional occupations are a

considerable burden to firms.
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5.4 Decomposing Firm TFP

In this section, I show one of the main results of the estimation procedure: that a substantial

share of the overall variance in firm TFP is actually due to the endogenous specialization

channel. Consider the firm’s production function in eq. (7). If we rewrite the time allocation

πnk as pnkL where L is the total quantity of labor hired by the firm, and pnk is the share of

total labor allocated to workers of type n working on task k, then we see that we can rewrite

firm j’s total output as

qj = zj

(
N∑
n=1

K∑
k=1

f(xn,yk)
ηpnk

) 1
η

︸ ︷︷ ︸
ρj

L
1
η (20)

Denote the average output quality term by ρj. In other words, we can write firm output as

qj = zjρjL
1
η . What we observe as firm TFP is actually a composite of the exogenous firm

productivity zj and the endogenous productivity of the workers hired by the firm, ρj, which

depends on the firm’s choice of which workers to hire, and which tasks to assign them in

production. We will call the “observed” TFP ẑj := zjρj. This representation of firm TFP

suggests a natural decomposition of the log variance:

Var(log ẑj) = Var(log zj)︸ ︷︷ ︸
Exogenous Firm Productivity

+ Var(log ρj)︸ ︷︷ ︸
Worker Productivity

+ 2Cov (log zj, log ρj)︸ ︷︷ ︸
Endogenous Specialization

(21)

The first term here represents variation in the true exogenous firm productivity across firms.

The second term, Var(log ρj) captures the fact that different mixes of worker types in pro-

duction are more or less productive. The final term in the decomposition, Cov(log zj, log ρj),

captures the fact that more productive firms endogenously choose a more productive mix of

workers to use in production.

Using the estimates from stages 1 and 2, I have estimates of both qj and zj at the firm

level. And ρj can be estimated by solving the firm’s problem of how to choose the optimal
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Comp Share
Var(log(zjρj)) 0.128 —

Var(log(zj)) 0.033 25.656
Var(log(ρj)) 0.048 37.516

2 Cov(log(zj), log(ρj)) 0.047 36.828

Table 5: Results of the variance decomposition of firm TFP in eq. (21)

time allocation, subject to the additional constraints that the share of workers be fixed at

the levels we observe in the data, firm by firm. With these estimates, I calculate the results

of the variance decomposition in eq. (21) and report the results in Table 5.

I find that variation in the exogenous firm productivity, which could also capture differ-

ences across firms in their capital stocks, accounts for only 24.2% of the variation in overall

firm TFP. A larger share of the variation is due to variation in worker productivity across

the firms. However, 36.1% of the overall variation in firm TFP is due to the the covariance

terms alone. That is, more productive firms endogenously choose to hire a more productive

mix of workers in production, and this endogenous specialization channel accounts for more

than a third of the observed variation in firm productivity.

Crucially, this endogenous specialization is not policy invariant. Any government policies

that distort the firms choice of whether or not to hire more specialized workers in production

(for instance, a tax on value added) can have large and counterintuitive implications for

aggregate productivity. The key observation is that even though firms in this economy have

market power, and decreasing returns to scale for a given number of occupations, the fixed

costs of hiring an occupation actually give firms a source of increasing returns to scale, which

is captured in this variance decomposition by the correlation between firm productivity

zj and the endogenously chosen worker productivity ρj. In the next section, I explore

the implications of this endogenous specialization mechanism under various counterfactual

scenarios.
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6 Counterfactuals

To quantify the contribution of endogenous worker specialization within the firm to aggre-

gate productivity and output, I will consider two counterfactual exercises. First, I consider

reducing the fixed costs κ faced by the firms to zero. This means that all firms in the econ-

omy will have costless access to the most specialized production technology, where they can

choose to hire any occupations they like. This counterfactual exercise gives an upper bound

on the gains from further worker specialization in the economy.

Second, to quantify the productivity gains from the specialization already occurring in

the economy, I consider a scenario where κ is set sufficiently large that no firm chooses to

hire more than a single occupation. This minimally specialized baseline economy, serves as

a lower bound on what productivity and output could be, if firms were not able to divide

their tasks among different occupations.

In order to have an apples to apples comparison, I solve the full model at the baseline

parameter estimates. For the counterfactual economies, I need to know how wages will adjust

to changes in firm demand for labor. For now, I assume a very simple model of labor supply:

each worker is endowed with L units of labor, and and idiosyncratic productivity ν. Workers

maximize:

max
n∈1,...,N

log(wnνL)− cn (22)

where cn is a disamenity cost of working in a particular occupation. An equilibrium is a

set of wages and quantities such that workers are indifferent between choosing all of the

occupations (which are chosen in equilibrium) and the total quantity of labor demanded,

integrating across all the occupations, equals the total supply. Because workers are indifferent

between working in each occupation, we know that for any occupations n and n′ that are

both chosen, it must be the case that

log(wn)− log(wn′) = cn − cn′ (23)
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and therefore the relative wages wn/wn′ are pinned down by the difference in occupation-

specific disamenities. In equilibrium, all wages adjust by a constant scaling factor λ so that

the total quantity of effective labor in the economy remains constant.10

I solve for the counterfactual economies, and present the results in Table 6. In the first

counterfactual, setting κ to zero and giving all firms costless access to the most specialized

production technology, I find relatively modest gains to increasing the degree of firm spe-

cialization in the economy. Sector GDP rises by about 1.3%, and consumption by slightly

more. This reflects the fact that much of the economy’s output is already being produced

by relatively large firms in the baseline. These firms are already operating at a fairly large

scale, and do not change their labor demand or output by much in response to a reduction

in the cost of hiring more occupations – they have already hired most of the occupations

that they need. The average skills demanded in the economy almost do not change at all.

In contrast, there are much larger changes when I restrict access to more specialized

ways of organizing production (by setting κ to be sufficiently large). We can think of these

counterfactual estimates as telling us what the contribution of worker specialization is to

aggregate productivity. If I shut down firm’s ability to hire specialized workers to complete

their tasks, and require that all of their tasks be completed by a single worker type, I find

that output falls by 9.5%, and consumption by 11.2%. These estimates serve as bounds on

how large the potential output gains/losses can be under various policy scenarios that distort

the firm’s specialization margin.

10I am currently working on relaxing this assumption, and allowing for imperfect substitution between
different occupations on the worker side. However, this theory of labor supply may be appropriate for con-
sidering long-run adjustments where the cost of acquiring the skills necessary for an occupation corresponds
to the cost and disamentity value of going to school to acquire those skills.

In order to relax this, we need the relative wages between occupations to adjust to clear each occupation’s
labor market separately in general equilibrium. In general, this is a very difficult problem to solve, as it
requires repeatedly re-solving the firm’s optimal labor choice (a computationally burdensome mixed-integer
linear program).
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Baseline κ = 0 κ = 2× κ̂ κ = Large
% ∆ Consumption 1.417 -0.727 -11.284

% ∆ Wage 0.065 -0.046 -1.009
% ∆ Output 1.203 -0.619 -9.676

Cognitive 0.374 0.369 0.375 0.370
Manual 0.431 0.463 0.420 0.321

Interpersonal 0.356 0.337 0.362 0.405

Table 6: Results from Counterfactual Policy Scenarios

7 Conclusion

In this paper, I answer the questions: what tasks must be performed to produce a good?

Which occupations are well suited to do those tasks, and what are the productivity gains

from reorganizing firms to use the optimal mix of occupations to complete these tasks?

My main finding is that firms’ endogenous choice of which workers to hire, and how to

organize them in production, is of first order importance in understanding both firm specific

and aggregate productivity. I find that larger firms make systematically different choices

than small firms about which types of workers to employ in production. As we move from

small to large firms, we see that firms systematically vary the total number of occupations

they hire, the average cognitive, manual, and interpersonal skills of those workers, and their

degree of dispersion in the skill space.

In my quantitative application, I find that 36% of the variation in firm TFP is due

to the endogenous choice of firms to hire more specialized workers in production. I find

that shutting down this specialization channel leads to output losses of 9.6%, even adjusting

wages to hold the total quantity of labor in the economy fixed. Moreover, I find that firms are

relatively close to the “optimal” level of specialization. Allowing for even more specialization

in the economy has gains that are bounded at about 1.3% of sector GDP. These estimates,

taken together, suggest that a measure of caution is warranted when considering policies

that might distort firms’ incentives to specialize workers in production, since there is limited

upside, and there are very large potential costs.
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(c) Manual vs. Interpersonal Tasks

Figure 9: Estimated Distribution of Tasks, Manufacturing, in 2000
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A Properties of the Model

To show how we can recover the distribution of tasks, it will help to have established some

basic properties of the model.

Lemma 1. The firm’s cost function cN(q; z) is linear in (q/z)η, for all N . In particu-

lar, it takes the form (q/z)ηc?N for some constant c?N which depends only on the number of

occupations hired N .

Proof. Recall that the firm’s cost function cN is given by

cN(q, z) = min
xn,Ln,π,s

N∑
n=1

wnLn Total Costs

s.t.
K∑
k=1

πnk = Ln ∀n Every worker is fully utilized

N∑
n=1

πnk = s×Gk ∀k Every task is fully assigned

z

[
N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk

] 1
η

≥ q Output Constraint

(9)

We want to show that for any values of q, z, q′ and z′, and for any λ, if (q′/z′)η = λ(q/z)η,

then cN(q′, z′) = λcN(q, z). So, fix q, z, q′, z′ and λ. Let us begin by noting that since both

q and z are positive, the output constraint can be rewritten as

N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk ≥

(q
z

)η

Let Ω = ({x?n} ,L?, π?, s?) be a solution to eq. (9) at (q, z).

Claim 1: The tuple Ω̂ = ({x̂n} , L̂, π̂, ŝ) := ({x?n} , λL?, λπ?, λs?) is a feasible solution to

eq. (9) at (q′, z′).

To see this, observe that the worker’s utilization constraint and the task assignment
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constraint hold by constraint (since they are just multiplied by λ on both sides). Moreover,

we see that

N∑
n=1

K∑
k=1

f(x̂n,yk)
ηπ̂nk =

N∑
n=1

K∑
k=1

f(x?n,yk)
ηλπ?nk By definition

= λ

(
N∑
n=1

K∑
k=1

f(x?n,yk)
ηπ?nk

)
Factoring out λ

≥ λ
(q
z

)η
Since Ω is feasible at (q, z)

=

(
q′

z′

)η
By assumption

(24)

Therefore, Ω̂ is feasible at (q′, z′). So, by optimality of cN , we know that

cN(q′, z′) ≤
N∑
n=1

wnλL?
n Def of cN

≤ λ
N∑
n=1

wnL
?
n Factoring out λ

≤ λcN(q, z) Def of cN

(25)

This argument applied in reverse, swapping (q, z) and (q′, z′), implies that

cN(q, z) ≤ 1

λ
cN(q′, z′) (26)

which of course means that

cN(q′, z′) ≥ λcN(q, z) (27)

as well. So eq. (25) and eq. (27) together imply that

cN(q′, z′) = λcN(q, z) (28)

as desired.
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To prove the second part of the lemma, let c?N = cN(1, 1). Then we see that for any

q and z, if we let λ = (q/z)η, we see see that (q/z)η = λ(1/1)η, and therefore cN(q, z) =

λcN(1, 1) = (q/z)ηc?N .

This brings us to our first sharp qualitative prediction of the model: after conditioning on

the number of different types of workers that the firm chooses to hire, the firm’s productivity

z does not affect the skillset that the firm will choose for those workers, or the relative shares

of each worker type that they choose.

Our description of the firm’s problem allows for the theoretical possibility that firms may

choose to split tasks across workers. That is, for some task k, we only require that the sum

of the time each worker spends on task k must equal the total quantity Gks which needs to

be done:
N∑
n=1

πnk = Gks

However, there is a special type of time allocation which we will be interested in, where only

a single worker is assigned to each task.

Definition 1. For any time allocation πnk, we say that π is a pure assignment solution

if for all k, if πnk > 0 then πn′k = 0 for all n′ 6= n.

It turns out that no firm will ever find it optimal to split tasks across workers, except on a

knife’s edge case. In general, for any given task, there is always a worker who is “best suited”

to do the task in the sense that the ratio of their output quality to their wage is the highest.

If firms were constrained to hire workers in a fixed proportion, they might sometimes be

compelled to partially or fully assign a task to the “suboptimal” worker. However, because

firms can freely adjust the quantity of labor Ln hired for each worker type n, they will never

find themselves in this situation. They will always hire exactly the correct proportion of

workers to line up with the tasks that they are assigned.

We formalize this intuition in the following proposition:
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Proposition 1. For any number of workers N , and any set of workers XN ∈
∏N

n=1X , the

firm’s optimal time allocation π? is a pure assignment solution except on a set of measure

zero.

Proof. Consider the first order conditions of the firm’s cost minimization problem when

q = 1 and z = 1. Let γ be the multiplier on the output constraint, ρn the multiplier on each

worker’s time constraint, and λk the multiplier on each task’s time constraint.

We can write the Lagrangian for the problem as follows:

L =
N∑
n=1

Lnwn + γ

(
1−

N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk

)

+
N∑
n=1

ρn

(
K∑
k=1

πnk − Ln

)

+
K∑
k=1

λk

(
N∑
n=1

πnk − s×Gk

)

+
N∑
n=1

K∑
k=1

ωnkπnk

(29)

with the Kuhn-Tucker complementary slackness conditions ωnkπnk = 0 for all n, k. Taking

first order conditions with respect to all of the choice variables, we find that optimality of
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the firm’s choices requires

[πnk] γf(xn,yk)
η = ρn + λk + ωnk ∀n, k (30)

[Ln] wn = ρn ∀n (31)

[s]
K∑
k=1

λkGk = 0 (32)

[ρn]
K∑
k=1

πnk = Ln ∀n (33)

[λk]
N∑
n=1

πnk = Gks ∀k (34)

[γ]
N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk = 1 (35)

First, we claim that at the optimal solution, γ =
∑N

n=1 wnLn. To see that this must be

true, consider that

γ =
∑
nk

γf(xn,yk)
ηπnk Output constraint with q = 1

=
∑
nk

(λk + ρn + ωnk)πnk Substituting eqs. (30) and (31)

=
∑
nk

(λk + ρn) πnk Complementary slackness condition

=
N∑
n=1

ρn

K∑
k=1

πnk +
K∑
k=1

λk

N∑
n=1

πnk Rearranging the sums

=
N∑
n=1

ρnLn +
K∑
k=1

λkGks Substituting feasibility constraints

=
N∑
n=1

ρnLn Since
∑
k

λkGk = 0

=
N∑
n=1

wnLn Substituting eq. (31)

(36)

Note that if π is not a pure assignment solution, then there exists distinct n and n′
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such that for some k, πnk > 0 and πn′k > 0. This implies that ωnk = ωn′k = 0 by the

complementary slackness condition. We see that by substituting eq. (30), we obtain

γf(xn,yk)− wn = γf(xn′ ,yk)− wn′ (37)

which occurs only on a knife’s edge case for a given set of wages.

The next proposition shows that a necessary condition for firm optimality is that for

each worker, their share of the wage bill must be exactly equal to their share of output in

production, except for a residual which corresponds to the average value to the firm of the

tasks the worker is assigned in production.

Proposition 2. If Ω = ({xn} ,L, π, s) solves eq. (9) at q = z = 1 then

wnLn∑N
i=1wiLi

=
K∑
k=1

f(xn,yk)
ηπnk +

K∑
k=1

λk
γ
πnk (38)

for all n.

Proof. Consider the first order condition eq. (30). For each occupation n, multiply eq. (30)

by πnk, substitute eq. (31), and sum over all the tasks k to obtain

γ
K∑
k=1

f(xn,yk)
ηπnk = wn

K∑
k=1

πnk +
K∑
k=1

λkπnk (39)

Recall that γ =
∑N

i=1wiLi, and that
∑K

k=1 πnk = Ln. Substituting into eq. (39) and

rearranging, we obtain the desired result.

For what remains, we will need the identifying assumption:

Assumption 1. For every worker n,
∑K

k=1 λkπnk = 0
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This requires that for each bundle of worker skills, the firm’s average surplus from assign-

ing that worker to a task (calculated over the set of tasks they are assigned in production)

is zero. We know that averaging over all workers, this must hold exactly – this is eq. (32).

Now, suppose we see a firm hiring N distinct occupations. Since we know that the

optimal assignment π is a pure assignment solution (from proposition 1), under assumption

1 we can rewrite eq. (39) as

wnLn∑N
i=1wiLi

=
K∑
k=1

f(xn,yk)
ηδnkGks (40)

where δnk = 1 if πnk > 0 and 0 otherwise. It is easy to see that we can rewrite this as a

matrix equation:

WN = sFN ×G (41)

where WN
n := wnLn∑N

i=1 wiLi
and

FN :=



f(x1,y1)δ11 . . . f(x1,yk)δ1k . . . f(x1,yK)δ1K

...
...

...

f(xn,y1)δn1 . . . f(xn,yk)δnk . . . f(xn,yK)δnK
...

...
...

f(xN ,y1)δN1 . . . f(xN ,yk)δNk . . . f(xN ,yK)δNK



It turns out that for any firm of size N , the matrix FN has full row rank.

Proposition 3. If f(x,y) > 0 then the matrix FN has full row rank.

Proof. Within a firm, the fact that the optimal time allocation πnk is a pure assignment

solution (proposition 1) implies that if δnk = 1 then δn′k = 0 for all n′ 6= n.

Now, let (FN
n )k := FN

nk denote the nth row of FN . Suppose there exist weights {φn}Nn=1
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such that
N∑
n=1

φnF
N
n = 0

Then we know that for each k,

N∑
n=1

φnf(xn,yk)δnk = 0

Since δnk can only be nonzero for a single n?(k), we know that this implies

φn?(k)f(xn?(k),yk) = 0 =⇒ φn?(k) = 0

Note that the mapping n? is surjective (every worker type must be assigned at least one

task, otherwise the firm would never have paid the fixed cost to hire workers of that type in

the first place). But this means that

φn = 0 ∀n

Thus, all the rows of FN are linearly independent, and rank(FN) = N .

B Proof of Theorem 1

By lemma 1 it is sufficient to consider the case where q = z = 1. We know that

1 =
N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk eq. (35)

=
N∑
n=1

K∑
k=1

f(xn,yk)
ηδnkGks By proposition 1

=⇒ s =

(
N∑
n=1

K∑
k=1

f(xn,yk)
ηδnkGk

)−1

(42)
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So, let’s rewrite eq. (40) substituting in the value of s:

WN
n

(
K∑
k=1

N∑
i=1

f(xi,yk)
ηδikGk

)
=

K∑
k=1

f(xnyk)
ηδnkGk (43)

Rearranging and collecting terms, we find that for each n,

0 =
K∑
k=1

(
f(xn,yk)

ηδnk −WN
n

N∑
i=1

f(xi,yk)
ηδik

)
Gk (44)

Let F̂N
nk := f(xn,yk)

ηδnk −WN
n

∑N
i=1 f(xi,yk)

ηδik, and let F̂N
n denote the nth row. Unlike

in proposition 3, we cannot show that F̂N has full row rank.11 However, we can show that

by dropping a single row of F̂, and replacing it with the constraint that
∑K

k=1 Gk = 1, we

obtain a system with rank N . We proceed in two steps:

1. First, we show that the first N − 1 rows of F̂ are linearly independent

2. Second, we show that the vector (1, 1, . . . , 1) does not lie in the span of the first N − 1

rows

Step 1. As in the proof of Proposition 3, let n?(k) denote the unique worker type n such

that δnk > 0. Without loss of generality, let us suppose that n?(K) = N . That is, the Nth

worker is assigned to the Kth task. We can do this without loss of generality, since we can

always reorder the list of workers so that it is true.

Now, suppose that there exist weights {φn}N−1
n=1 such that

∑N−1
n=1 φnF̂

N
n = 0. We want to

show that φn = 0 for all n = 1, . . . , N − 1.

Consider k < K. We see that

N−1∑
n=1

φnf(xn,yk)
ηδnk =

N−1∑
n=1

WN
n φn

N∑
i=1

f(xi,yk)
ηδik (45)

11In fact, it is easy to see that it does not. Sum eq. (44) across all values of n. The first sum-

mand
∑N
n=1

∑K
k=1 f(xn,yk)ηδnkGk is exactly s. The second summand

∑N
n=1 W

N
n s is also exactly s, since∑N

n=1 W
N
n = 1 by construction. So, we see that the sum of all the rows of F̂ is identically zero.
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Since π is a pure assignment solution, know that only a single δnk is positive for each k. So

we can rewrite this as

φn?(k)f(xn?(k),yk)
η = f(xn?(k),yk)

η

N−1∑
n=1

WN
n φn

=⇒ φn?(k) =
N−1∑
n=1

WN
n φn

(46)

since f is strictly positive. Since n? is a surjection from {1, . . . , K − 1} to {1, . . . , N − 1},

and this is true for all k < K, this means that all of the weights φn are a constant φ, which

solves φ = φ
∑N−1

n=1 WN
n . Therefore,

0 = φ

(
1−

N−1∑
n=1

WN
n

)

But since every wage bill share is strictly positive 12, and we know that
∑N

n=1 WN
n = 1, that

means that 1−
∑N=1

n=1 WN
n > 0. This implies that φ = 0, which proves the claim.

Step 2. Now, to show that the vector (1, 1, . . . , 1) does not lie in the span of
{

F̂N
n

}N−1

n=1
,

suppose towards contradiction that it does. That is, suppose there exist weights {φn}N−1
n=1

such that for every k
N−1∑
n=1

φnF̂
N
nk = 1

We can substitute in the definition of F̂N
nk to obtain

φn?(k)f(xn?(k),yk)
η = 1 + f(xn?(k),yk)

η

N−1∑
n=1

WN
n φn for k < K (47)

0 = 1 + f(xN ,yK)η
N−1∑
n=1

WN
n φn for k = K (48)

12If not, that would imply that the firm did not hire any workers of that type, which means that their
choice to pay the fixed cost of hiring that occupation could not have been optimal.

53



Now, eq. (48) implies that
N−1∑
n=1

WN
n φn =

−1

f(xN ,yK)η

Substituting this into eq. (47) we find that

φn?(k) =
1

f(xn?(k),yk)η
− 1

f(xN ,yK)η
(49)

Let k?(n) denote a task (not necessarily unique) for which n?(k?(n)) = n. We know that

such a task exists because every worker is assigned at least one task.

But consider that

−1

f(xN ,yK)η
=

N−1∑
n=1

WN
n φn

=
N−1∑
n=1

WN
n φn?(k?(n))

=
N−1∑
n=1

WN
n

(
1

f(xn,yk?(n))η
− 1

f(xN ,yK)η

)

=
N−1∑
n=1

WN
n

(
1

f(xn,yk?(n))η

)
−
∑N−1

n=1 WN
n

f(xN ,yK)η

=⇒ −WN
N

f(xN ,yK)η
=

N−1∑
n=1

(
WN

n

f(xn,yk?(n))η

)

=⇒ 0 =
N∑
n=1

(
WN

n

f(xn,yk?(n))η

)

(50)

This is a contradiction since f is strictly positive and WN
n > 0. So, (1, 1, . . . , 1) does not lie

in the span of the first N − 1 rows of F̂ .

C Recovering q and z

Suppose that for a given firm, hiring k different types of workers, we observe the skill bundles

of their workers {yj : j = 1, . . . , k}, and the effective labor hired Mj for each type. How can
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we back out the firm quantities and productivities from what we observe?

Start from the fact that ck(q, z) =
(
q
z

)η
ck, where ck is the total (labor) cost to the firm

of producing at q/z = 1, which is given by the model.

We observe the firm’s actual wage bill W =
∑k

j=1Mjw(yj), and so we can back out the

firms output to productivity ratio q as

q =
q

z
=

(∑k
j=1 Mjw(yj)

ck

) 1
η

(51)

The firm faces an inverse demand curve of the form p(q) = αqσ−1. So, eq. (8) can be

rewritten as

max
q,k

αqσ −
(q
z

)η
ck − κ× k (52)

Taking the first order condition with respect to q, we see that a necessary condition for the

firm to be producing optimally is that

ασqσ−1 = η

(
qη−1

zη

)
ck (53)

If we substitute for z using the definition of q, and isolate q, we obtain q in closed form:

q =

(
ηckq

ασ

) 1
σ

z =
1

q

(
ηckq

ασ

) 1
σ

(54)

So, to obtain q and z from the data we observe on each firm, given a value of α we proceed

in three steps:

1. Given the firm’s choice of worker skills and shares of effective labor, find the firm’s unit

costs ck using the solution to the firm’s assignment problem eq. (9)
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2. Back out the output to productivity ratio q using eq. (51)

3. Solve for q and z using eq. (54) and the definition of q.

Now, recall that α is actually a function of the aggregate price index and quantities. We

need to make sure that the implied prices and quantities aggregate up to the correct price

indices.

D Extension: Outsourcing

In this section, I show how to extend the main model of this paper to accommodate out-

sourcing of tasks. Here, I consider the model of Section 4, but relax the requirement that all

tasks must be performed by workers within the firm.

In addition to the firms which produce the intermediate output goods, there is an addi-

tional representative outsourcing firm. This firm has the technology to intermediate between

goods producing firms and workers: for any task y, the outsourcing firm provides labor from

a worker with exactly the best skills for the job (x = y) and charges a constant markup µ

over the marginal cost of providing the labor. Let w : X → R denote the competitive wage

function, which encodes the wage paid to every skill level.

Firms can choose to assign each task either to one of their n workers, or to outsource

the task to the outsourcing firm on a spot market. They choose both a time allocation πnk

and an outsourcing allocation σk such that for every task k, the total quantity of time that

the in-house workers are assigned to work on the task and the time outsourced workers are

assigned to the task are equal to the time requirements of the task. That is,

N∑
n=1

πnk + σk = s×Gk ∀k (55)

56



The firm problem now becomes:

cN(q, z) = min
xn,Ln,π,σ,s

N∑
n=1

w(xn)Ln +
K∑
k=1

µw(yk)σk Total costs

s.t.
K∑
k=1

πnk = Ln ∀n Every worker is fully utilized

N∑
n=1

πnk + σk = s×Gk ∀k Every task is fully assigned

z

[
N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk

] 1
η

≥ q Output constraint

(56)

Firms trade off the gains from having outsourced workers who are extremely well suited to

the tasks being assigned against the increased costs for those workers that are charged by

the outsourcing firm. Firms tend to assign workers to tasks when those tasks are fairly close

to those workers’ skills, and to outsource tasks which are farther away from their chosen

workers. Crucially, by choosing which tasks are performed in-house, firms endogenously

form their own boundary.

E Extension: Hicks Neutral Capital

In this section, I show how to extend the model in section 4 to accommodate Hicks-neutral

capital, and how to separately recover estimates of the firm’s capital stock using the first

order conditions of the firm’s problem.

Suppose that each firm j can purchase capital kj by renting it from the household, and

that they have a Cobb-Douglass production technology (with capital share β) to combine

capital and the quality-aggregated task output from their workers. The firm’s production

technology (originally given in eq. (7)) is now:

qj = zjk
β
j

[
N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk

] 1−β
η

(57)
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The firm’s cost minimization problem can now be written as:

cN(q, z, k) = min
xn,Ln,π,s

N∑
n=1

wnLn Total labor costs

s.t.
K∑
k=1

πnk = Ln ∀n Every worker is fully utilized

N∑
n=1

πnk = s×Gk ∀k Every task is fully assigned

zkβ

[
N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk

] 1−β
η

≥ q Output constraint

(58)

Proposition 4. The firm’s cost function in eq. (58) cN(q, z, k) is linear in
(

q
zkβ

) η
1−β . In

particular it takes the form
(

q
zkβ

) η
1−β c?N for some constant c?N which depends only on the

number of occupations hired N .

Proof. Observe that we can rewrite the firm’s output constraint as

N∑
n=1

K∑
k=1

f(xn,yk)
ηπnk ≥

( q

zkβ

) η
1−β

Define ẑ = zkβ and η̂ = η
1−β . From here, the proof is identical to Lemma 1, using ẑ and η̂

instead of z and η.

An immediate corollary to this proposition is that the solution to the firm’s task allocation

problem is identical to the task assignment chosen by the firm without capital. After factoring

out the factor of
(

q
zkβ

) η
1−β from the problem with capital, and the factor of

(
q
z

)η
from the

problem without, the two problems coincide exactly.

In the next proposition, I show that given a value of β, we can simultaneously recover

estimates of qj, zj, and kj for each firm by matching the firm’s overall wage bill and exploiting

the optimality of the firm’s choice of output and capital.
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Proposition 5. Let q = q
zkβ

and let r be the rental price of capital. Then if k? and q? are

the firm’s optimal choice of capital and output, we can recover them in closed form as:

k? =

(
βη

1− β

)(
c?N
r

)
q

η
1−β

q? =

[(
η/(1− β)

ασ

)
× c?N × q

η
1−β

] 1
σ

(59)

Proof. Consider now the firm’s profit maximization problem for a given number of worker

types N :

max
q,k

αqσ −
( q

zkα

) η
1−β

c?N − kr (60)

If we take the first order condition with respect to k, and substitute the definition of q we

see that a necessary condition for optimality is that

r =

(
βη

1− β

)(
c?N
k?

)
q

η
1−β

=⇒ k? =

(
βη

1− β

)(
c?N
r

)
q

η
1−β

which is the first half of the desired result. Similarly, if we take the first order condition with

respect to q, we obtain

0 = −
(

η

1− β

)
c?N

(
q

zk?β

) η
1−β

q−1 + ασqσ−1

This implies (multiplying both sides by q) and substituting the definition of q that

ασq?σ =

(
η

1− β

)
× c?N × q

η
1−β

Solving for q, we find that

q? =

[(
η/(1− β)

ασ

)
× c?N × q

η
1−β

] 1
σ
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which completes the proof.

An immediate result of this proposition is that the identification strategy used in Section 5

is robust to the inclusion of Hicks-neutral capital, up to a change in the interpretation of the

returns-to-scale coefficient η, and a change in the interpretation of the span of control zj.

F Robustness: Narrowly Defined Industries

In this section, I repeat the empirical analysis from Section 3 on a subset of extremely

narrowly defined 5-digit industry codes. Following Foster, Haltiwanger, and Syverson (2016),

I consider a set of industries that produce a homogenous commodity good, like cement or

plywood, and where it is unlikely to be the case that large and small firms have distinct

production processes. That is, industries where we can expect that large and small firms are

likely completing the same set of tasks.

I choose four industry classifications to examine: sugar cane production and refining,

manufacture of plywood, cement manufacturing, and coffee growing/roasting. These indus-

tries are chosen to match closely the industries in Foster et al. (2016), for the industries

where good analogues exist in the Brazilian CNAE. I define Sugar Production to be any

firm with industry codes corresponding to “Cultivation of Sugar Cane” (01139), “Sugar

Mills” (15610) and “Sugar Refining and Milling” (15628). Plywood manufacturing consists

of a single 5-digit industry code: “Manufacture of Laminated Wood and Plywood, Pressed

or Agglomerated Sheets” (20214). Cement manufacturing is a single industry code in the

CNAE (26204). Like sugar, I define the coffee industry to consist of several related indus-

try codes: “Coffee Growing” (01325) and “Coffee Roasting and Grinding” (15717), to be

consistent with the definition in Foster et al. (2016) (who also aggregate whole beans and

roasted/ground coffee mixtures). I do not report results for the remaining industries they

consider (Processed and Block Ice, Carbon Black, and Bread) as there do not exist exact

analogues for these industries at similar levels of aggregation in the Brazilian CNAE.
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Within each of these narrowly defined industries, I repeat the empirical analysis from

Section 3: I regress on decile fixed effects the log of the number of occupations within each

firm, the average skill level for each dimension of skill, and the within-firm standard deviation

of each skill. I report the results for the number of occupations in Table 7. I find in each

of the narrowly defined industries a qualitatively similar pattern to what I observe in the

aggregate: the number of occupations hired is monotonically increasing in firm size. Even in

the comparatively smaller samples, I have extremely tight estimates. For almost all of the

deciles, the confidence intervals of the estimates for adjacent deciles are non-overlapping.

I find similar results for the within-firm standard deviation of skills (which I report in

Tables 8 to 10). In almost all deciles of all four industries, the dispersion of skills is increasing

monotonically, with tight and non-overlapping confidence intervals. This is qualitatively

similar to the findings in Section 3, although as with the overall number of occupations, the

the size of the increase in dispersion varies across industries. This provides a sharp rejection

of the assumption of homotheticity of the production function, even at the 5-digit industry

level.

For the average skills (which I report in Tables 11 to 13 ), I find evidence that for

most of the industry-skill pairs, the average skill level is not constant across the firm size

distribution. Although we do not see substantial changes in the average cognitive skills in

the two agricultural industries (sugar and coffee), this is not entirely surprising. We do see

substantial variation in these industries for the average level of manual skill across firm sizes,

which suggests that to the extent that larger firms hire more specialized workers in these

industries, the increase in specialization occurs primarily along the manual dimension of

skill, rather than the cognitive. Although the pattern of how average skill varies by firm size

is different from industry to industry, it is striking that even within these narrowly defined

industries, there is clear evidence that larger firms hire workers with systematically different

skills than their smaller counterparts.
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log(Occupations)
Sugar Cane Plywood Cement Coffee

(1) (2) (3) (4)
(Intercept) 0.042* 0.096*** 0.059*** 0.051***

(0.024) (0.030) (0.009) (0.019)
deciles: 2 0.169*** 0.313*** 0.081*** 0.102***

(0.055) (0.054) (0.015) (0.037)
deciles: 3 0.531*** 0.484*** 0.164*** 0.175***

(0.081) (0.063) (0.018) (0.044)
deciles: 4 0.888*** 0.766*** 0.277*** 0.404***

(0.083) (0.064) (0.020) (0.046)
deciles: 5 1.433*** 0.928*** 0.406*** 0.566***

(0.107) (0.065) (0.022) (0.053)
deciles: 6 2.306*** 1.184*** 0.519*** 0.749***

(0.095) (0.064) (0.023) (0.048)
deciles: 7 2.862*** 1.297*** 0.665*** 1.075***

(0.099) (0.068) (0.023) (0.049)
deciles: 8 3.023*** 1.573*** 0.849*** 1.283***

(0.089) (0.065) (0.024) (0.050)
deciles: 9 3.354*** 1.990*** 1.094*** 1.575***

(0.056) (0.065) (0.024) (0.048)
deciles: 10 3.533*** 2.391*** 1.819*** 2.278***

(0.064) (0.088) (0.032) (0.063)
N 497 1061 5506 941
R2 0.857 0.595 0.553 0.732

Table 7: Firm size ranks are calculated using the total quantity of effective labor hired.
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Cognitive w/in Firm Std
Sugar Cane Plywood Cement Coffee

(1) (2) (3) (4)
(Intercept) 0.006* 0.009*** 0.007*** 0.009**

(0.004) (0.003) (0.001) (0.004)
deciles: 2 0.026*** 0.035*** 0.012*** 0.009

(0.009) (0.007) (0.003) (0.007)
deciles: 3 0.059*** 0.037*** 0.021*** 0.027***

(0.010) (0.007) (0.003) (0.008)
deciles: 4 0.101*** 0.052*** 0.030*** 0.069***

(0.010) (0.007) (0.003) (0.010)
deciles: 5 0.129*** 0.045*** 0.042*** 0.087***

(0.010) (0.006) (0.003) (0.011)
deciles: 6 0.149*** 0.063*** 0.054*** 0.119***

(0.006) (0.007) (0.004) (0.010)
deciles: 7 0.136*** 0.056*** 0.062*** 0.153***

(0.006) (0.006) (0.004) (0.009)
deciles: 8 0.147*** 0.058*** 0.071*** 0.150***

(0.006) (0.005) (0.004) (0.009)
deciles: 9 0.149*** 0.065*** 0.082*** 0.163***

(0.005) (0.005) (0.003) (0.008)
deciles: 10 0.149*** 0.074*** 0.104*** 0.175***

(0.005) (0.005) (0.003) (0.007)
N 497 1061 5506 941
R2 0.557 0.132 0.181 0.428

Table 8: Within-firm standard deviation of skills are calculated by as the standard deviation
of the skills of workers hired, weighting by the total quantity of effective labor supplied by
each worker. Firm size ranks are calculated using the total quantity of effective labor hired.
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Manual w/in Firm Std
Sugar Cane Plywood Cement Coffee

(1) (2) (3) (4)
(Intercept) 0.007 0.010*** 0.009*** 0.009**

(0.004) (0.004) (0.002) (0.004)
deciles: 2 0.026** 0.047*** 0.014*** 0.014**

(0.010) (0.009) (0.003) (0.007)
deciles: 3 0.093*** 0.056*** 0.024*** 0.026***

(0.016) (0.009) (0.003) (0.008)
deciles: 4 0.129*** 0.073*** 0.040*** 0.058***

(0.014) (0.008) (0.004) (0.009)
deciles: 5 0.154*** 0.070*** 0.049*** 0.059***

(0.011) (0.007) (0.004) (0.008)
deciles: 6 0.193*** 0.080*** 0.062*** 0.078***

(0.009) (0.007) (0.004) (0.008)
deciles: 7 0.204*** 0.073*** 0.079*** 0.108***

(0.010) (0.006) (0.004) (0.008)
deciles: 8 0.203*** 0.072*** 0.089*** 0.120***

(0.008) (0.006) (0.003) (0.008)
deciles: 9 0.211*** 0.088*** 0.106*** 0.137***

(0.006) (0.006) (0.003) (0.006)
deciles: 10 0.208*** 0.096*** 0.136*** 0.157***

(0.007) (0.006) (0.003) (0.007)
N 497 1061 5506 941
R2 0.584 0.148 0.268 0.399

Table 9: Within-firm standard deviation of skills are calculated by as the standard deviation
of the skills of workers hired, weighting by the total quantity of effective labor supplied by
each worker. Firm size ranks are calculated using the total quantity of effective labor hired.
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Interpersonal w/in Firm Std
Sugar Cane Plywood Cement Coffee

(1) (2) (3) (4)
(Intercept) 0.005 0.011*** 0.009*** 0.007**

(0.004) (0.004) (0.001) (0.003)
deciles: 2 0.020** 0.044*** 0.012*** 0.015**

(0.008) (0.009) (0.003) (0.006)
deciles: 3 0.053*** 0.052*** 0.021*** 0.023***

(0.011) (0.009) (0.003) (0.007)
deciles: 4 0.091*** 0.071*** 0.030*** 0.064***

(0.011) (0.008) (0.003) (0.009)
deciles: 5 0.103*** 0.069*** 0.043*** 0.081***

(0.009) (0.008) (0.003) (0.009)
deciles: 6 0.141*** 0.090*** 0.057*** 0.115***

(0.007) (0.008) (0.003) (0.008)
deciles: 7 0.146*** 0.082*** 0.066*** 0.134***

(0.007) (0.007) (0.003) (0.008)
deciles: 8 0.149*** 0.093*** 0.077*** 0.136***

(0.007) (0.006) (0.003) (0.007)
deciles: 9 0.145*** 0.103*** 0.088*** 0.141***

(0.006) (0.006) (0.003) (0.006)
deciles: 10 0.143*** 0.116*** 0.114*** 0.156***

(0.006) (0.006) (0.003) (0.005)
N 497 1061 5506 941
R2 0.542 0.201 0.242 0.448

Table 10: Within-firm standard deviation of skills are calculated by as the standard deviation
of the skills of workers hired, weighting by the total quantity of effective labor supplied by
each worker. Firm size ranks are calculated using the total quantity of effective labor hired.
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Cognitive Skills
Sugar Cane Plywood Cement Coffee

(1) (2) (3) (4)
(Intercept) 0.366*** 0.350*** 0.340*** 0.396***

(0.027) (0.012) (0.008) (0.022)
deciles: 2 0.045 -0.031** -0.013 -0.040

(0.036) (0.015) (0.010) (0.029)
deciles: 3 0.036 -0.050*** -0.039*** 0.001

(0.035) (0.015) (0.010) (0.032)
deciles: 4 0.006 -0.038*** -0.047*** -0.039

(0.032) (0.014) (0.009) (0.028)
deciles: 5 0.012 -0.064*** -0.045*** -0.028

(0.031) (0.014) (0.009) (0.029)
deciles: 6 0.004 -0.059*** -0.050*** -0.007

(0.029) (0.014) (0.009) (0.027)
deciles: 7 -0.002 -0.067*** -0.045*** -0.004

(0.030) (0.013) (0.009) (0.027)
deciles: 8 -5.496e-04 -0.066*** -0.047*** -0.015

(0.029) (0.013) (0.009) (0.027)
deciles: 9 -0.007 -0.068*** -0.044*** 0.038

(0.028) (0.013) (0.008) (0.026)
deciles: 10 -0.021 -0.066*** -0.027*** -0.004

(0.028) (0.013) (0.008) (0.025)
N 497 1061 5506 941
R2 0.025 0.080 0.016 0.017

Table 11: Average skills are calculated by as the mean of the skills of workers hired, weighting
by the total quantity of effective labor supplied by each worker. Firm size ranks are calculated
using the total quantity of effective labor hired.
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Manual Skills
Sugar Cane Plywood Cement Coffee

(1) (2) (3) (4)
(Intercept) 0.428*** 0.584*** 0.524*** 0.356***

(0.028) (0.018) (0.008) (0.020)
deciles: 2 0.083* -0.003 0.042*** 0.053*

(0.042) (0.025) (0.011) (0.029)
deciles: 3 0.046 0.019 0.045*** 0.097***

(0.039) (0.022) (0.011) (0.027)
deciles: 4 0.045 0.032 0.055*** 0.096***

(0.036) (0.022) (0.011) (0.024)
deciles: 5 0.071** 0.030 0.058*** 0.065***

(0.035) (0.020) (0.010) (0.024)
deciles: 6 0.074** 0.022 0.064*** 0.065***

(0.030) (0.021) (0.010) (0.024)
deciles: 7 0.099*** 0.048** 0.069*** 0.056**

(0.029) (0.020) (0.010) (0.025)
deciles: 8 0.121*** 0.045** 0.072*** 0.066***

(0.030) (0.020) (0.009) (0.023)
deciles: 9 0.114*** 0.043** 0.082*** 0.043*

(0.029) (0.019) (0.009) (0.024)
deciles: 10 0.118*** 0.034* 0.082*** 0.005

(0.028) (0.019) (0.009) (0.022)
N 497 1061 5506 941
R2 0.066 0.021 0.024 0.041

Table 12: Average skills are calculated by as the mean of the skills of workers hired, weighting
by the total quantity of effective labor supplied by each worker. Firm size ranks are calculated
using the total quantity of effective labor hired.
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Interpersonal Skills
Sugar Cane Plywood Cement Coffee

(1) (2) (3) (4)
(Intercept) 0.396*** 0.216*** 0.288*** 0.391***

(0.024) (0.020) (0.008) (0.018)
deciles: 2 -0.006 -0.033 -0.026** -0.041

(0.032) (0.025) (0.010) (0.025)
deciles: 3 2.131e-04 -0.063*** -0.044*** -0.039

(0.033) (0.022) (0.010) (0.025)
deciles: 4 -0.030 -0.067*** -0.057*** -0.069***

(0.029) (0.022) (0.009) (0.025)
deciles: 5 -0.031 -0.078*** -0.060*** -0.040

(0.028) (0.021) (0.009) (0.025)
deciles: 6 -0.053** -0.071*** -0.069*** -0.028

(0.026) (0.022) (0.009) (0.023)
deciles: 7 -0.083*** -0.091*** -0.064*** -0.015

(0.025) (0.020) (0.009) (0.021)
deciles: 8 -0.094*** -0.095*** -0.070*** -0.032

(0.026) (0.021) (0.009) (0.022)
deciles: 9 -0.097*** -0.094*** -0.069*** 0.021

(0.025) (0.021) (0.008) (0.020)
deciles: 10 -0.105*** -0.093*** -0.060*** 0.001

(0.025) (0.021) (0.008) (0.020)
N 497 1061 5506 941
R2 0.118 0.070 0.032 0.031

Table 13: Average skills are calculated by as the mean of the skills of workers hired, weighting
by the total quantity of effective labor supplied by each worker. Firm size ranks are calculated
using the total quantity of effective labor hired.
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G Robustness Check: Leather Working Industry

A key identifying assumption of the model is that all firms within an industry face an identical

distribution of tasks. If this assumption fails, then it could be the case that when we observe

large firms hiring more occupations, it is because they are expanding the set of tasks that

they are doing, rather than hiring more specialized workers to do the same tasks.

To address this potential concern, I re-estimate the model using a more narrowly specified

industry industry (Leather working). Because leather goods are relatively homogeneous, we

can expect that when we see larger firms hiring more occupations, they really are hiring

those additional occupations to do the same set of tasks. I show in this section that the main

qualitative results of the paper are robust to this more narrow specification of industry.

I present the estimation results in tables 14 to 16 and fig. 10. In particular, I find a

very similar result from the variance decomposition of firm TFP: 31.7% of the variation in

firm TFP is due to the fact that more productive firms exogenously choose to hire a more

productive mix of workers in production.

In table 17 I present the results from my counterfactual exercise applied to the Leather

Industry. My results are qualitatively similar to what I find for the entire manufacturing sec-

tor, although I actually estimate larger costs to shutting down the endogenous specialization

channel.
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α β
Cognitive 3.442 1.364

Manual 2.342 1.590
Interpersonal 1.618 2.969

Table 14: Parameter Estimates for Marginal Distributions of G(x)

Absolute Advantage Comparative Advantage
Cognitive Manual Interpersonal Cognitive Manual Interpersonal

Cognitive 4.676 -3.460 -1.448 6.776 -0.774 0.030
Manual -5.175 4.525 0.544 -0.774 0.849 -0.009

Interpersonal -3.300 -3.108 1.774 0.030 -0.009 8.059e-04

Table 15: Parameter Estimates for the production function parameters A and B, Leather
Industry

Comp Share
Var(log(zjρj)) 0.155 —

Var(log(zj)) 0.019 12.144
Var(log(ρj)) 0.087 56.124

2 Cov(log(zj), log(ρj)) 0.049 31.732

Table 16: Results of the variance decomposition of firm TFP in eq. (21), Leather Industry

Baseline κ = 0 κ = 2× κ̂ κ = Large
% ∆ Consumption 0.928 -0.446 -20.498

% ∆ Wage 0.351 -0.200 -7.324
% ∆ Output 0.789 -0.379 -17.715

Cognitive 0.367 0.367 0.367 0.362
Manual 0.385 0.386 0.384 0.378

Interpersonal 0.356 0.357 0.356 0.368

Table 17: Results from Counterfactual Policy Scenarios, Leather Industry
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Task Distribution -- Marginal over Interpersonal
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(a) Cognitive vs. Manual Tasks

Task Distribution -- Marginal over Manual
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(b) Cognitive vs. Interpersonal Tasks
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(c) Manual vs. Interpersonal Tasks

Figure 10: Estimated Distribution of Tasks, Leather Working, in 2000
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